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ARTICLES 
In the Shadow of Giants: A Section of 

American Mathematicians, 1925-1950 
DAVID E. ZITARELLI 

Temple University 
Philadelphia, PA 19122 

zit@temple.edu 

Reading about giants in the history of mathematics can be exhilarating and rewarding. 
Here we expound on a group of five individuals who toiled in the shadows of American 
giants in the first half of the twentieth century. Our group consists of three who founded 
an MAA section (Joseph Reynolds, Howard Mitchell, and Albert Bennett) and two 
who nurtured the section during its infancy (J. R. Kline and Arnold Dresden). Although 
they made impressive contributions to the American mathematical community, they 
are not household names like three of the national figures who soared above them-
E. H. Moore, Oswald Veblen, and R. L. Moore [63]. 

Yet our aim is much broader than describing the outstanding achievements of the 
early leaders of an MAA section. We uncover vital connections between our quintet 
and the national leaders that demonstrate how towering figures influence the rest of the 
mathematical community, thereby allowing us to better understand the dynamics of the 
interlocking pieces within the overall community. We also indicate how our five reflect 
major developments that took place within the American mathematical community 
during the second quarter of the 20th century. In addition, we glimpse their various 
philosophies on mathematics education during this period. 

The paper begins with a brief history of AMS and MAA sections, including sum
maries of the founding of the Philadelphia Section (now called Eastern Pennsylvania 
and Delaware-EPADEL) and the establishment of this MAGAZINE by the Louisiana
Mississippi Section. Then we elucidate the lives and major works of the five math
ematicians who were leaders locally but rank and file nationally. Along the way we 
indicate ways in which two of the MAA's official journals, the American Mathemat
ical Monthly and this MAGAZINE, provided vital outlets for publishing this group's 
mathematical works and publicizing their views on mathematics education. 

Sections 

The MAA was founded on the last two days of 1915. By contrast, the AMS got its 
start in 1888 as the New York Mathematical Society. Initially the AMS was a local 
organization centered in New York, but the founding of three sections enabled it to 
spread its wings across the continent: Chicago in 1896, San Francisco in 1902, and 
Southwest in 1906. There was a much shorter gap between the birth of the MAA and 
the founding of its first sections-a matter of minutes. By the end of its first year, 
the MAA boasted six thriving sections; another ten would come on board in the next 
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decade [42].  However, up to 1926 no section was located entirely in the East. (Two 
good sources on the early histories of the AMS and MAA are [2, pp. 3-9] and [29, 
pp. 18-2 1], respectively.) 

Before then, MAA leaders Herbert Slaught and W. D. Cairns expressed concern 
about the "seeming apathy or lethargy" of mathematicians in the Atlantic States [Al] . 
That situation changed in 1925 when Joseph Reynolds of Lehigh University suggested 
the idea of forming a Lehigh Valley Section. However, Reynolds was unable to garner 
sufficient support for his idea. As Parshall and Rowe demonstrated so convincingly in 
their book The Emergence of the American Mathematical Research Community, every 
professional organization needs a sufficiently large community in order to survive, let 
alone thrive [44] . The missing piece to Reynolds 's puzzle was a critical mass of indi
viduals and institutions that would support his plan. He found them by looking south 
toward Philadelphia, a city whose population was approaching two million at the time. 

On the Saturday after Thanksgiving in 1926, three individuals organized a meeting 
at Lehigh with the express purpose of forming an MAA section. To their delight, 20 
members showed up and, after a morning of mathematical presentations, voted unani
mously to petition the MAA to form the Philadelphia Section. At first MAA leadership 
opposed the name. As Albert Bennett wrote ([Al] ; also recorded in [42, pp. 94-95]): 

At the organizational meeting . . .  a request for establishing the Philadelphia sec
tion of the MAA was forwarded to Secretary Cairns. His first reaction was that 
the name was ill-chosen, since all the other Sections were named for States, and 
to name a section after so small a political unit as a city, would break sound 
precedent. I wrote back that Pennsylvania had two natural cultural centers, one 
at the extreme east (Philadelphia), the other at the extreme west (Pittsburgh). One 
could not expect much of an attendance at either of these places, from residents 
near the other. Philadelphia should attract persons from Eastern Pennsylvania, 
Delaware and southern New Jersey. Setting a new precedent might encourage the 
later founding of a Pittsburgh Section, attracting mathematical instructors from 
West Virginia and Eastern Ohio as well as from western Pennsylvania. Cairns 
and Slaught were not obstinate, and in December, the Section was admitted un
der its proposed name, subject of course to the usual provision of By-Laws, etc. ,  
and promises of good behavior. 

We doubt whether the last part about "promises of good behavior" was actually 
stated. The author, Albert Bennett, a decidedly colorful personality with a gift for 
captivating prose, was one of the three founders of the section along with Howard 
Mitchell of the University of Pennsylvania (Penn) and Bennett's "ever loyal associate 
J. B .  Reynolds" [Al]. Just as Bennett so presciently predicted, the Allegheny Section 
was formed at the other Pennsylvania focal point in 1933. Until then the Philadel
phia Section included the central part of Pennsylvania, including active Penn State 
mathematicians. The section also included the southern part of New Jersey (including 
Rutgers and Princeton) up to the founding of the New Jersey Section in 1956 under 
Albert Meder of Rutgers and Albert W. Tucker of Princeton. 

The Louisiana-Mississippi Section, established in 1924, two years before the 
Philadelphia Section, played a prominent role in the history of the MAGAZINE. 
We provide a synopsis of this development so the reader can place various events 
in historical perspective. (Beckenbach [3] provides a fuller treatment of the jour
nal's history.) Mathematics Magazine began as a series of eight pamphlets written by 
Samuel Thomas Sanders (1872-1970) of Louisiana State University during 1926-27 
to encourage membership in the MAA. Sanders 's hope that the pamphlets could be 
expanded into a magazine was realized in October 1927 when the Mathematics News 
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Letter was published as Vol. 2, No. 1. By 1934 the journal had outgrown its regional 
roots so its name was changed accordingly to National Mathematics Magazine. How
ever, the financial support that LSU provided from 1935 to 1942 was terminated when 
the state of Louisiana was forced by fiscal constraints due to World War II to slash 
the university's budget. To exacerbate the situation, the editor, S. T. Sanders, who had 
continually used his own funds to underwrite operational costs, reached mandatory 
retirement age at LSU that year. Deficits mounted alarmingly ! 

The MAA responded by providing subsidies but even those dried up in 1945, where
upon the National Mathematics Magazine abruptly ceased publication. Fortunately, 
one rabid reader, UCLA's Glenn James (1882-1961), developed a considerable em
pathy for Sanders and his journal, so he assumed sponsorship and management. Be
cause the journal had grown to international dimensions, James shortened its title to 
the present MATHEMATICS MAGAZINE when he resumed publication in 1947. James, 
like Sanders, employed his whole family in every aspect of typesetting, printing, and 
mailing the journal. But by 1959 deteriorating eyesight caused him to negotiate with 
the MAA over the publication and editorship of the journal. The December 1960 is
sue revealed the complete transfer and the MAA has published it since then. We will 
see that four of the main characters in our group were involved with MATHEMAT
ICS MAGAZINE in various ways before it became the second official journal of the 
MAA. (In 1974 the MAA initiated the College Mathematics Journal, which had been 
published by Prentice-Hall as the Two-Year College Mathematics Journal the previous 
four years.) Now we tum to our five main characters, examining their lives and works 
to see what roles these journals played in their development. 

Farmer to founder 

As we have noted, Joseph Benson Reynolds (1881-1975) is credited with the idea of 
forming the first MAA section in the East. Born in the western part of Pennsylvania, 
Reynolds did not graduate from high school until age 22 because he had to work on 
the family farm. A competitive scholarship allowed him to attend Lehigh, where he 
earned an A.B . degree in 1907 with an undergraduate thesis on temperature compen
sation of a sidereal clock, thus signaling an interest in applied mathematics. He then 
accepted an instructorship at Lehigh, where he spent the rest of his professional life. 
This was a typical appointment for those who desired to pursue graduate work be
cause assistantships, as we know them today, did not arise until after World War II. 
Reynolds earned a master's degree in 1910 with a thesis on the orbit of a minor planet, 
a theme reflecting the genesis of Lehigh's Department of Mathematics and Astron
omy. However, his doctoral dissertation, "The application of vector analysis to plane 
and space curves, surfaces and solids," submitted to Moravian College in 1919, reveals 
an evolving interest in pure mathematics. When he presented the first invited lecture at 
the organizational meeting of the Philadelphia Section in 1926, his topic paralleled the 
theme of the dissertation--evolutes of certain plane curves. He also served as chair of 
the section for 1938 and 1939. 

Reynolds's  publication record shows that the Monthly and this MAGAZINE pro
vided vital outlets for many college teachers. His first formal entries were two pro
posed Monthly problems in 1915, one on calculus and the other on mechanics [47]. 
In the remainder of that year he solved three problems, with his solution to one posed 
by Monthly founder B. F. Finkel selected to appear in print [48]. The following year 
Reynolds proposed three other problems and solved one, but in the banner year 1917 
he was cited 19 times-five proposed problems, three solutions to problems he had 
posed earlier, four printed solutions, and seven solutions listed under "also solved by." 
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Figure 1 joseph B. Reynolds (Photograph cou rtesy of Lehigh University Archives) 

His last proposed problem appeared in 1965 when he was 84 years old, exactly 50 
years after his first [ 49] . 

The Monthly accounted for most of Reynolds's publication activity, with almost 
200 entries appearing in connection with its problems department. Although there is 
sometimes a tendency among historians to criticize the orientation toward problems 
in early American mathematical journals, even the father of American mathematics, 
E. H. Moore, submitted solutions to six problems in The Analyst during his senior 
year at Yale. In fact, all five of our rank-and-file mathematicians submitted solutions 
to Monthly problems. The succession of Reynolds's  other contributions traces his de
velopment as a mathematician. In his banner year 1917 he published a small note in 
the Monthly [50] , but it would be six more years until his first full paper [52] would ap
pear. His enduring interest in both pure and applied mathematics can be seen in a 1944 
article that described a method for solving differential equations, where he claimed 
that his approach was appropriate for "every student who is trained for engineering or 
other scientific work" [51,  p. 578]. In this respect Reynolds was somewhat ahead of his 
time, because shortly after World War II the country experienced a wave of teaching 
reforms aimed at satisfying the needs of the burgeoning number of students pursuing 
science and engineering in the nation's universities. 

Joseph Reynolds published three papers in the MAGAZINE when it was called 
the National Mathematics Magazine. In 1938, he showed how to evaluate the inte
grals J sinn ()dO and J cosn () d() for even integers n using Euler's  forms for sin() and 
cosO [45] , while in 1944 he presented geometrical interpretations of the formula for 
the statistical mean [46] . The third paper combined his interests in pure and applied 
mathematics by deriving an equation of an ellipse in order to explain the workings 
of a machine built by precision-tool manufacturers for cutting nuts (for bolts) in the 
shapes of various regular polygons [53] . A few other papers appeared in outlets like 
the Mathematics Teacher, the Tohoku Mathematical Journal, and the Proceedings of 
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the Pennsylvania Academy of Science, but Reynolds also published in several journals 
that reflect an overarching interest in applied mathematics, such as Agricultural Engi
neering, Chemical and Metallurgical Engineering, Concrete, Automotive Industries, 
Iron Age, and the Journal of the American Welding Society. It is worth noting that an 
item in Science, "Falling chimneys," corrected a result from a previous paper in that 
respected journal about where breaks in a chimney will occur (if at all). 

Joseph Reynolds also wrote five textbooks, one a standard calculus book and the 
other four on theoretical mechanics. His Elementary Mechanics (1928) was revised six 
years after its initial publication and reprinted three years later. His proclivity toward 
applied mathematics might make him seem like an improbable candidate to found an 
MAA section, yet his interests paralleled those of many mathematicians around 1900, 
including several presidents of the AMS. He died in Sugar Run, Pennsylvania, at age 
94. Overall he was a mathematician who carried out some original investigations and 
wrote several books but should be remembered mainly as a problemist. Moreover, his 
interest in astronomy, mechanics, and engineering hearken back to an earlier period in 
the history of mathematics in America. Reynolds had no apparent ties to the leading 
mathematical figures of the day, either during his student years or during his profes
sional career, unlike our four remaining characters. 

Blue-blooded founder 
There is a stark contrast between Joseph Reynolds and Howard Hawks Mitchell (1885-
1943). While Reynolds came from farming stock, Mitchell's father Oscar Howard 
Mitchell (1851-89) was the fifth person to obtain a doctorate (in 1882) from the coun
try's first true graduate program at Johns Hopkins under the estimable J. J. Sylvester. 
And while Reynolds earned a Ph.D. at tiny Moravian at age 38, Mitchell was 26 when 

Figure 2 Howard Hawks Mitchell (Photograph courtesy of Special Collections, Dawes 
Memorial Library, Marietta College) 
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he received his doctorate at tony Princeton under Oswald Veblen. Yet he is virtually 
unknown today. FIGURE 2 shows Mitchell from the Marietta year book for 1906. 

Howard Mitchell was born on January 14, 1 885, in Marietta, Ohio. He graduated 
from Springfield (Massachusetts) High School before returning to his home town to 
attend Marietta College, where his father had been professor of mathematics and as
tronomy from 1 882 until his untimely death. The son graduated from Marietta in 1906 
as salutatorian with a Ph.B. degree. (No longer in use, Ph.B. is the abbreviation of the 
Latin term for Bachelor of Philosophy.) Mitchell then enrolled in the fledgling gradu
ate program at Princeton, where he graduated in 19 10  as Oswald Veblen's first official 
Ph.D. student. His dissertation was published in the Transactions one year later [38]. 
He was appointed an instructor at Yale University's Sheffield School in 19 10, but the 
next year he accepted an instructorship at Penn, where he taught for the rest of his life. 
During his tenure Mitchell supervised five Ph.D. dissertations. (His most renowned 
student was probably Leonard Carlitz ( 1907-99), the number theorist who spent post
doctoral years at Cal Tech under E. T. Bell and at Cambridge under G. H. Hardy before 
settling at Duke 1 932-77.) During World War I, Mitchell served as a ballistician under 
Oswald Veblen at Aberdeen Proving Ground; Grier [26] provides details on the type 
of work done there. 

Howard Mitchell was the only member of our group whose involvement with the 
MAA was minimal. He did not even join the MAA before helping found the Philadel
phia Section in 1 926, and his membership afterwards was sporadic. But he remained 
active with the local section, serving as its first chair 1 926-27 and again 1936-37, and 
delivering three one-hour invited lectures on quadratic forms ( 1926), group characters 
( 1929), and Ramanujan (1932). Yet at the national level he held no elected offices, 
served on no committees, and edited no journals. However, he did serve a three-year 
term on the Board of Trustees of the AMS 192 1-23, and a six-year stint as editor of the 
Transactions 1 925-30. He was also elected vice president of the AMS 1932-33, and 
vice president and Chair of Section A of the American Association for the Advance
ment of Science in 1 932. These positions suggest that Mitchell's major focus was on 
research mathematics and not undergraduate education. 

We already noted a tie between the Mitchell family and Johns Hopkins, one of the 
two leading graduate programs in the country circa 1 900. Studying under Veblen at 
Princeton linked Mitchell to the other program-the University of Chicago. And then 
in 1 9 1 1 ,  Mitchell was appointed an instructor at Penn at the same time as Chicago 
graduate R. L. Moore. Today Moore is widely known for his method of teaching and 
for his contributions to topology, but up to that point he had published very little. Yet 
Penn offered both instructors an especially supportive environment that allowed them 
to prosper. By the time Moore left for Texas in 1 920, he had progressed from a promis
ing mathematician to one of recognized stature, yet Mitchell was promoted sooner and 
produced a Ph.D. student earlier. On the other hand, Moore may have inspired Mitchell 
to teach the earliest known modified Moore Method course [62, p. 476]. 

Mitchell's publication record, though not prodigious, is impressive. For instance, 
in 1923 he co-authored an important book on algebraic numbers for the National Re
search Council with L. E. Dickson, H. S. Vandiver, and G. E. Wahlin. Between 1 9 1 3  
and 1 9 1 8  he published seven important papers i n  his specialties of linear groups and 
algebraic number theory in the country's three research journals: two in the Ameri
can Journal, one in the Annals, and four in the Transactions. Only two appeared after 
that. His 1 926 article on ideals in quadratic fields was sandwiched between papers 
by two of the towering figures in American mathematics, Marshall Stone and Oswald 
Veblen [40]. Mitchell's final paper appeared in the Monthly in 1935 and harked back to 
his initial investigation on group theory and projective geometry [39]. It was his only 
MAA publication except for a solution to a Monthly problem [41]. He is the only mem-
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ber of our quintet never to contribute to the National Mathematics Magazine. Mitchell 
died of coronary thrombosis in 1943 at age 58. 

Section promoter 
While Joseph Reynolds wrote mainly for undergraduate-oriented publications and 
Howard Mitchell mainly for research journals, the remaining three members of our 
quintet contributed to both and participated equally in the MAA and the AMS. The 
first, Albert Arnold Bennett (1888-1971), like Mitchell a protege of Veblen, was a col
orful character who lived in the Philadelphia area on two separate occasions totaling 
only eight years. Bennett was born June 2, 1888, on the U.S. Reservation in Yokohama, 
Japan, where his parents were missionaries with the Rhode Island Baptist Association. 
At age 14 he came to Providence, RI, to live with relatives and complete his education. 
Since his father, two grandfathers, and many other family members were Brown grad
uates, he entered as a legacy applicant in 1906. After earning A.B. and A.M. degrees 
in 1910 and an Sc.M. in 1911, he entered the graduate program at Princeton, where he 
may have met Howard Mitchell because he later recalled, "H. H. Mitchell, whom I had 
known at Princeton, was, as always, generous and encouraging" [Al] . This accounts 
for Mitchell ' s  recruitment into the effort to form a section of the MAA in Philadelphia 
15 years later. 

Figure 3 Albert A. Bennett (Photograph courtesy of Brown University Archives) 

Like Mitchell, Bennett earned a Ph.D. under Oswald Veblen (in 1915) for a dis
sertation at the interface between algebra and projective geometry. It appeared in the 
Annals in 1915 [4] . Although only 21 pages long, it accounted for a sizable portion of 
the 196-page volume for 1914-15. That this neophyte would be accorded such recog
nition was probably due to the fact that three of the six editors were highly regarded 



1 82 MATHEMATICS MAGAZINE 

faculty members at Princeton, where the journal was published: Veblen, Luther Eisen
hart ( 1 876-1965), and J. H. M. Wedderburn ( 1 882-1948). Moreover, Bennett pub
lished three papers in the volume for 1916-17, all on topics in analysis, accounting for 
47 of the journal's 217  pages. 

Clearly Bennett's star was rising. He remained at Princeton as an instructor until 
the fall of 19 16, when he accepted an adjunct professorship (what we would call to
day an assistant professorship) at the University of Texas. But patriotism compelled 
him to enroll in the Army's first Officer Training Corps (which evolved into today's 
R.O.T.C.) even though he was 28 years old at the time. In August 19 17  Bennett was 
commissioned a captain in the artillery corps, C.A.R.C., and the following June was 
transferred to the Ordnance Department. He served on Veblen's ballistics research staff 
along with Gilbert Bliss, Norbert Wiener, and Howard Mitchell at Aberdeen Proving 
Ground, where he "prepared numerical methods to solve the ballistics equations" [26, 
p. 928]. Bennett was honorably discharged in January 19 19, yet he served as a civilian 
mathematician and dynamics expert with the Ordnance Department until September 
192 1 .  During this time he wrote a book on ballistics that was initially classified "Con
fidential; for official use only" [12]; in 1954 the Ballistics Research Lab at Aberdeen 
deemed his tables important enough to warrant republication [6]. 

The time Bennett spent in war service undoubtedly accounts for a diminution in 
his publication record between 19 17  and 1920. However, like many mathematicians 
caught up in war, he did not let combat duty extirpate his mathematical investigations. 
For instance, he is listed in a 19 18  paper in the Bulletin of the AMS as Captain Al
bert A. Bennett, C.A.R.C. Emphasizing the isolation of his outpost he wrote, "This 
treatment is believed to be original, but the literature available for examination by the 
author is that customary to an army post, 'somewhere on the Gulf of Mexico,' -nil" [5, 
p. 479]. Apparently the holdings in Bennett's outpost were not as barren as one might 
infer from this statement. An examination of the Monthly reveals a different mathe
matical activity-problem solving-which can be pursued in short bursts of energy, 
unlike the sustained periods of intense mental concentration needed for deep research 
projects. From January 1917 to March 19 18, Bennett was a regular contributor to the 
problems department, proposing seven and solving six others in algebra, number the
ory, and geometry. Curiously, the printed solution to one problem he proposed was by 
Joseph Reynolds, who would found the Philadelphia Section with Bennett almost ten 
years later [16]. A problem Bennett proposed in the September 1 9 1 8  issue [9] lists 
his address as Galveston, thus identifying his whereabouts "somewhere on the Gulf of 
Mexico." 

Bennett's problem-solving exploits ultimately placed him in "the ranks of those em
inent in their chosen specialties who were impelled to contribute frequently . . .  while 
actively engaged in university teaching" [58, p. 8]. Joseph Reynolds too was cited 
with five "other problemists [who] upon becoming emeritus found continued problem
solving an effective weapon against vegetation." Both encomia appeared in the Otto 
Dunkel Memorial Problem Book [25], a special issue of the Monthly based upon the 
400 best problems in the journal from 19 18  to 1950. The selection panel singled out 
four problems Bennett had proposed, including an influential one he sent while at 
Texas in 1925 [10, p. 261]. Surprisingly he did not adopt the term semigroup in the 
problem, even though he had already used it in the title and abstract of a lecture at an 
annual AMS meeting [11, pp. 223-224]. The problem's classification under "Unsolved 
algebra problems" in the Dunkel Book [25, p. 68] sparked a solution the next year by 
the Polish problemist Andrzej Makowski [35]. Shorter solutions appeared in 1962 [19] 
and 1 965 [18, p. 324] before the problem was finally laid to rest [60, pp. 915-9 16]. 

In the fall of 1 92 1 ,  his war duties completed, Bennett resumed his career at Texas. 
One of his first activities was to found an undergraduate mathematics club, The Pen-



VOL. 78, NO. 3 ,  J U N E  2005 1 83 

tagram, which played a minor role in the evolution of the Moore Method [62, p. 477] . 
Bennett had been active with the Maryland-Virginia-De Section of the MAA while 
stationed at Aberdeen, and he extended those endeavors to the national level upon 
reaching Texas, being elected a trustee, appointed to the Committee on Publications, 
and appointed editor-in-chief of the Monthly. He was elected vice-president of the 
MAA in 1925 (and again in 1933 and 1934) while at the same time chairing its Texas 
Section. He had to forego the latter position when he became professor and head of the 
department at Lehigh, a post he held for only two years before returning to Brown, his 
alma mater. It was during Bennett's two years at Lehigh that he was the main cog in 
founding the Philadelphia Section after being "urged to wake up some sectional activ
ity" [A1] .  Upon moving to Brown, Bennett's attempt to form a New England Section 
of the MAA was unsuccessful, mainly because the Association of Teachers of Mathe
matics in New England (ATMNE) was then in the hands of college professors from the 
Boston area. In fact, Bennett was elected president of the ATMNE in 194 1 .  However, 
by 1955 college teachers felt the need for an MAA section so Bennett served as tem
porary chair at an organizational meeting arranged by Howard Eves, Donald Kearns, 
and John Kemeny to found the Northeastern Section. A history of that section aptly 
described Bennett as "an experienced section promoter" [42, pp. 10 1 -102] . 

The moves from Austin to Bethlehem to Providence had little effect on Bennett's 
production of research articles, although his publication record at Lehigh was mod
est. Perhaps his best-known works are a book on formal logic [15] he coauthored 
with Charles A. Baylis ( 1902-75) and his brief history of the MAA up to World War 
II [8] . Of more relevance here is Bennett's growing involvement with educational is
sues. Beginning in the early 1920s he wrote a host of articles on pedagogy and the 
curriculum. In 1927 he was appointed chair of the MAA's Committee on Assigned 
Collateral Readings in Mathematics, which drew up a list of suggested assignments 
for a freshman-year course based on outside reading [36, p. 30] , and from 1941  to 
1945 he served as chair of the MAA's Conference Committee on Education. In be
tween he published an article in the Monthly on teacher training based on an invited 
address delivered at the 1938 joint MAA meeting with the National Council of Teach
ers of Mathematics. Bennett was assigned the topic of methodology but he protested, 
"Common decency suggests that the college professor either make a careful study of 
the problem of teacher preparation or refrain from making judgment" [13, p. 2 14] . 
Yet he moved quickly beyond common decency, adding a steady flow of "ungracious 
words" on issues related to teacher preparation, such as whether mathematics depart
ments should offer courses in methodology and what courses should be required of fu
ture high-school teachers. His unsparing criticism of the behavior of some professors 
became enmeshed with a veiled attack on the central role of research in universities: 
"Some professors have atrocious table manners, or are extremely slovenly as to dress, 
or succeed very poorly in transmitting and evoking ideas in the classroom. But such 
disagreeable details are often condoned in the presence of more valued attributes" [13, 
p. 216] .  

Bennett continued railing against the prevailing preparation of high-school teachers 
in an article published in this MAGAZINE. He expressed a fear that enrollments in 
mathematics courses during World War II would decline precipitously once wartime 
programs ended, but, as we now know, that never occurred. However, his thoughts 
on various ways to present mathematics in an attractive manner remain relevant today. 
The article concluded, "If its practical utility, its beauty, its essential role in interpreting 
the times becomes clear . .. no one need fear for the mathematical education of the next 
generation" [14, p. 322] . 

The patriotic Bennett rejoined the Army at age 54 when World War II broke out, 
serving from 1 942 to 1 946 and being promoted from Major to Lieutenant Colonel. 
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Once again he was assigned to the Ordnance Department at Aberdeen under Oswald 
Veblen. After the war, he was sent to the country of his birth to survey Japanese 
weaponry. One of the more illustrious young mathematicians to work at Aberdeen un
der Bennett was Herman Goldstine ( 19 13-2004), who, in a 1985 interview, described 
his boss in most ungracious terms: "From time to time I was very impatient of Al
bert Bennett, who was a nice old gentleman-but he was a very precise, methodical, 
plodding person who drove me up the wall" [59]. 

Bennett retired from Brown in 1958 but subsequently taught at three other colleges. 
His devotion to teaching remained strong to the end. An obituary revealed that he 
"taught last week, but called BC [Boston College] early this week, saying he had the flu 
and wouldn't be in until next Thursday" [A2]. He died that Wednesday evening in 197 1  
at age 82, having been a member of the MAA for all of its 5 5  years. In his address on 
teacher training, he cited one textbook as a model for presenting the appropriate spirit 
of mathematics. One of the authors of that book was J. R. Kline, who, for reasons we 
explain below, was not one of the founders of the Philadelphia Section. 

Moore-trained leader 

John Robert Kline ( 1 89 1 -1955) was arguably the most influential mathematician in 
Philadelphia from 1 920 to 1950. He should be much better known for, among other 
things, his support of African-Americans at a time when such encouragement was not 
the norm. Born December 7, 189 1 ,  in Quakertown, near Philadelphia, J. R. Kline ob
tained an A.B. in 1 9 1 2  from Muhlenberg College (located in nearby Bethlehem) and 
a year later enrolled in the graduate program at Penn, where two newly hired instruc
tors were Howard Mitchell and R. L. Moore. Apparently Kline took two courses with 
Moore: Foundations of Mathematics, and a sequel called Theory of Point Sets. Beyond 
these, individual study was the fashion, with Moore encouraging his better students to 
work solely with him. Kline thrived under the Moore Method, obtaining a master's 
degree in 1 9 1 4  and a Ph.D. two years later for a dissertation that was completed in 
19 15  and published in the Annals the next year [30]. 

After teaching at Muhlenberg 1915-16, Kline accepted an instructorship at Penn so 
he could continue to work with Moore. He left Penn in 1 9 1 8  but returned two years 
later (after one year at Yale and another at the University of illinois) to replace Moore, 
who had moved to Texas. Although Moore remained at Texas and Kline at Penn for the 
rest of their lives, the archives at the Center for American History in Austin contain 
a steady stream of correspondence between the two. Moreover, each sent students 
to study under the other, either during their graduate studies or as post doctorates. 
Kline took several leaves of absence from Penn, including a one-year stay 1926-27 
as a Guggenheim Fellow in Gottingen, which explains why he was not a founder of 
the Philadelphia Section. However, he played an active role thereafter, being elected 
secretary-treasurer 1 927-28 and chair 1932-33.  At Penn he served as chair from 1 940 
until his untimely death in 1955. 

During his tenure, Kline directed nineteen doctoral dissertations. His first student, 
Harry M. Gehman ( 1 898-198 1 ;  Ph.D. 1925), served the MAA as secretary-treasurer 
1948--60 and, when that position was bisected, as treasurer 1 960-67. Kline was a par
ticularly fair and unbiased man who permitted any qualified candidate to study under 
him. 'IWo cases are particularly noteworthy. In 1 928, he supervised the doctoral disser
tation of Dudley W. Woodard, who became the second African-American student to 
receive a Ph.D. in mathematics in the United States. William Claytor became the third 
when he completed his dissertation in 1933.  (The first, Elbert Cox, received his degree 
at Cornell University in 1 925 [20].) 



VOL.  78, NO. 3, JUNE 2005 1 85 

J. R. Kline became a respected member of the international mathematical commu
nity, publishing four papers in the Polish journal Fundamenta Mathematicae and three 
in the Proceedings of the National Academy of Science. Moreover, he wrote a joint 
paper with his advisor, the only publication Moore ever coauthored [43]. (This is not 
particularly surprising in light of the extreme individual competitiveness that under
lies the Moore Method.) Most of Kline's publications appeared from the time of his 
dissertation in 19 16  to a long paper on separation axioms in topology in 1 928 [32]. 

Figure 4 j. R. Kl i n e  (Photograph courtesy of the American Mathematical  Soc iety) 

Kline and two of his students lent active support to the MAGAZINE. As secretary 
of the AMS during 194 1 -42, he wrote strong letters urging officials in Louisiana to 
restore the journal's subsidy, which had been slashed from $2700 to $600. He also sup
plied the names and addresses of 5000 mathematicians to be sent a circular describing 
the journal and inviting subscriptions. These actions led to his inclusion among ten 
prominent figures cited in a note titled "Noblesse oblige!" [55]. In 1943, Norman Ely 
Rutt ( 1 900-9 1 )  contributed "A peak individual donation!" of $50 to the journal [56]. 
Rutt received his 1928 Ph.D. under Kline, spent two postdoctoral years at Texas with 
R. L. Moore, taught at LSU 1936-66, and contributed actively to the MAGAZINE. The 
other Kline student, MAA secretary-treasurer Harry Gehman, informed Glenn James 
in 1959 that the MAA had agreed to take over full management. 

J. R. Kline became very concerned with graduate education, as witnessed by his 
final paper, which sheds light on the state of mathematics in the country after World 
War II. In late November 1945, six months after VE Day, he presented his views on 
rebuilding graduate departments in an address at the annual MAA meeting. His re
marks were published the following March under the title, "Rehabilitation of graduate 
work" [31]. Kline felt strongly that the steep decline in the production of mathematics 
Ph.D.s from 1 04 in 1 94 1  to 39 in 1944 had to be reversed by invigorating the coun
try's graduate programs. He noted the deleterious effects of the Draft Board, which 
granted no deferments for mathematicians and graduate students until July 1 942, and 
then only for those teaching at least 1 5  hours per week. Yet even that deferment was 
abolished within two years. Because of this, at the end of the war the country found 
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itself with only 1675 Ph.D.s in mathematics among 4600 college teachers at the rank of 
instructor or above. Moreover, due to the GI Bill, mathematics enrollments in the fall 
of 1945 tripled. Kline cited some egregious conditions he felt must be changed, like 
frozen salaries and high teaching loads. He also emphasized the need to "re-condition" 
researchers about to resume academic careers. In conclusion, he proposed two imme
diate initiatives: preferential demobilization, and the establishment of a system of fel
lowships for postdoctoral students (like those the National Research �ouncil formerly 
administered), full-time graduate students, and superior undergraduates. Although the 
first initiative never materialized, the second exceeded even Kline's expectations when 
the National Science Foundation was established in 1950. Unfortunately, a prolonged 
and progressive illness led J. R. Kline to commit suicide in May 1955 at age 63. 

Twelve years earlier, Kline had served on the joint AMS-MAA Committee on Avail
able Teachers in Collegiate Mathematics. Established by the War Policy Committee, its 
charge was to compile and maintain a register of vacancies and availability of math
ematicians for service throughout the war. Arnold Dresden, a neighbor of Kline's, 
was one of the two other members. In the early 1930s this duo took part in an ex
change between Penn and two area colleges that sent Kline, Howard Mitchell, and 
Hans Rademacher to teach at Swarthmore and Bryn Mawr while Dresden and Hein
rich W. Brinkmann (from Swarthmore) and Anna Pell-Wheeler and Gustav A. Hed
lund (from Bryn Mawr) proceeded inversely. 

Music lover, Santa looker 

Arnold Dresden (1882-1954) was a native of Amsterdam who attended the university 
there for three years. However, in 1903, and against his parents' wishes, he used tuition 
money to book passage to New York in order to help a friend in Chicago, where he 
arrived on November 23, his twenty-first birthday. During his first two years in the 
Windy City, Dresden worked at various jobs, including stacking merchandise at the 
Marshall Fields wholesale warehouse at $10 a week. He also taught six classes at the 
high school associated with the University of Chicago called the Laboratory School, a 
task he faced with grave misgivings because, as he recalled, "In Holland we tortured 
our teachers" [1, p. 5], but he had no trouble maintaining discipline in America. 

By 1905, Dresden had scraped together enough money to enroll at the University of 
Chicago. He received his Ph.D. four years later, writing a dissertation on the calculus 
of variations under Oskar Bolza. Then he accepted an assistant professorship at the 
University of Wisconsin, where he remained for eighteen years. A naturalized citizen 
since 1913, Dresden's humanitarian bent compelled him to participate in World War I 
by working for the Red Cross in France during 1918-19. 

The May 1927 Monthly heralded his arrival in the Philadelphia area nine months 
after the MAA section was founded: "Professor Arnold Dresden of the University of 
Wisconsin has been appointed professor of mathematics at Swarthmore College. An 
interesting feature of his work in that college will be in connection with the honors 
course for juniors and seniors" [33, p. 277]. Dresden described this course in a 1931 
lecture to the Philadelphia Section of the MAA. Minutes from that meeting record only 
that he gave "an account of the way in which this plan [for honors work] is realized, 
particularly in mathematics and the natural sciences" [17]. Fortunately the Monthly 
supplied more details [33, p. 277]: 

Students in that course are not obliged to attend classes, are free to work at tasks 
assigned to them on which they have conferences with their instructors as often 
as may seem desirable. No grades or records are kept during these two years. 
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At the end of the senior year they have to take a comprehensive examination 
covering the work of these two years and conducted both in oral and written 
parts by an outsider. 

The honors program that Dresden designed required students to complete four sem
inars in mathematics and two in each of two minors, which constituted the student's 
whole course load during the final two years. External examiners conducted all assess
ment. Although parts of the system have been drastically revised, external examiners 
remain an integral part of the program today. 

Arnold Dresden became one of the most respected and effective leaders in both the 
AMS and the MAA. At the second meeting of the fledgling Philadelphia Section in 
November 1927, he presented an invited lecture, "On matrix equations," reporting on 
a method (to determine solutions of polynomial matrix equations in which the con
stant term is missing) that had just been developed by his only Ph.D. student, William 
Edward Roth. Dresden was promptly elected to the Program Committee; he would be 
elected again in 1939. He was also elected chair for two two-year terms, 1931-32 and 
1940-4 1 .  During his first summer in the East ( 1928) he taught courses at Penn with 
both Kline and Mitchell. 

Dresden began his publishing career in 1907 while still a graduate student at 
Chicago, writing two papers on the calculus of variations. Part of his dissertation 
appeared in the Transactions the following year [23] ; further advances appeared in 
1 916, 1 9 1 7, and 1923. In 1 923 he also published two papers on symmetric forms inn 
variables. But from that time on, with only a few exceptions, all submissions seem to 
have been restricted to the MAGAZINE and the Monthly. 

Dresden was an early, ardent advocate of the MAA. In 1915 ,  he sent a strong letter 
of support for the idea of forming the Association to Herbert Slaught, who was trying 
to gauge the degree of backing for the idea that took root at the end of the year. How
ever, it was not until Dresden's move to Swarthmore that his focus changed from the 
AMS to the MAA. He was elected president for 1933 (succeeding E. T. Bell; Albert 
Bennett was vice-president) after having served as vice president for 193 1 .  

Two noteworthy events occurred during Dresden's presidency. One took place on 
a tour of the South over his Easter vacation, when he presented two lectures at the 
joint meeting of the Louisiana-Mississippi sections of the MAA and NCTM. The sec
tion chair exhorted the membership to "give him a hearty welcome into the splendid 
fellowship of our sections" [57, p. 96] , resulting in a throng of eighty-five people at
tending his address at the banquet on Friday night, "The Mathematical Association 
of America and American mathematics," and his lecture on Saturday morning, "Some 
aspects of the calculus of variations." The report of the meeting cited his willingness 
to participate: "Besides bringing us very helpful addresses Prof. Dresden frequently 
entered the discussions which were unusually fine at these meetings" [37, p. 82] . 

Arnold Dresden's retiring MAA presidential address for 1934, "A program for 
mathematics," published in the Monthly the following April, encapsulated his deep 
concern about the place of mathematics in general culture and about the mathematical 
community's laissez-faire attitude toward the role it should play. He wrote, "It is my 
firm conviction that both the content and the spirit of mathematics have a great deal 
to contribute to the education of the individual" [21,  p. 200] . A recurring theme was 
his belief that abstract concepts can be grasped by young people, which he preached 
in his 1936 book, An Invitation to Mathematics [22] . Although ostensibly intended 
for a liberal arts audience, the contents include the number system, point set theory, 
types of infinity, foundations of geometry, noneuclidean geometry, analytic geometry, 
projective geometry, calculus, differential equations, vector analysis, and the theory 
of numbers. A review in the Monthly [34] opined that due to Dresden's original ap-
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proach, "incredible as it may appear, 'the preparation that is indispensable for the use 
of this book does not exceed what is furnished by a good high school course in algebra 
and in plane geometry' ." In another review, the sometimes truculent Albert Bennett 
raved, "The book is the outcome of several years of classroom experience . . .  the 
reader may hope to find not only much of the charm and symmetry of mathematics 
but as well a lively appreciation of the fundamental significance for the modem life 
of the expanding achievements of mathematical science" [7, p. 535] . This enthusiasm 
was shared by Texas mathematician H. J. Ettlinger, who concluded, "There is every 
reason to commend the author for a real contribution to American mathematical text 
books" [24, p. 289] . Judging by the lack of advertising for this book after its initial 
run, it appears that financial success did not follow critical acclaim. 

Dresden's  other textbook, Introduction to Calculus (1940), which aimed to provide 
a rigorous approach (for instance, introducing Dedekind cuts to develop the real line) 
did not even receive critical commendation. A review by Alston Scott Householder 
(1904-93), famous today for his eponymous transformations in linear algebra, ex
pressed reservations about the ability of American sophomores to handle this level of 
rigor, yet he looked forward to adopting it, adding, "It will be a distinct pleasure to try 
out this book in the class" [27, p. 50] . However, two years later Householder admitted, 
"The purpose is admirable, but it is hard to see how justice can be done to Dresden's  
text in eight semester hours with any but a very exceptional class" [28, p. 45] . 

Figure 5 Arnold Dresden (Photographs courtesy of the Friends Historical Library of 
Swarthmore College) 

At Swarthmore, as at Wisconsin, Dresden was known as much for his wide inter
ests and musical talent (especially the piano) as for his mathematics, and his Monday 
evening chamber music sessions were celebrated. Students adored him. The alumni 
magazine gushed, "Of all the people on Swarthmore's faculty, one of the most beloved 
is a man who could easily be mistaken for Santa Claus, both in spirit and in the 
flesh" [1,  p. 5] . When asked about the history of his beard, called "the finest hirsute 
adornment on campus," he replied, "Why, I 've had it ever since I was born" [1,  p. 10] . 
Arnold Dresden resided in the town of Swarthmore from the time of his appointment 
in 1927 until his death in 1954 at age 71. He had retired from active teaching just two 
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years earlier, ably succeeded by David Rosen (1921-2003), who continued his role 
with the honors program and active participation with the MAA [61, p. 1 19] . 

Summary 

We have described the lives and work of five leaders of the Philadelphia Section of the 
MAA who prospered in the second quarter of the twentieth century. The three founders 
(Joseph Reynolds, Howard Mitchell, and Albert Bennett) and two early leaders (J. R. 
Kline and Arnold Dresden) were local maxima but globally operated in the shadows 
of giants, like E. H. Moore, Oswald Veblen, and R. L. Moore. Table 1 shows that our 
five were born in one eleven-year period and received their doctorates in another. 

TAB L E  1 :  The five at a glance 

Birth Death Ph.D. Institution Supervisor 

Reynolds 1 8 8 1  1975 19 19  Moravian N/A 
Mitchell 1 885 1943 19 10  Princeton Veblen 
Bennett 1 888 1971 19 15  Princeton Veblen 
Kline 1 89 1  1955 19 16  Pennsylvania R. L. Moore 
Dresden 1 882 1954 1909 Chicago Bolza 

The three founders were quite different. Reynolds was interested in applications 
of mathematics to astronomy, mechanics, and engineering. Mitchell was a specialist 
in group theory. Bennett switched from being primarily a researcher to an adminis
trator with a strong interest in educational issues, particularly teacher training. Kline 
and Dresden were alike. They lived in the same small town and developed deep con
cerns for the state of mathematics education in America, Kline at the graduate level 
and Dresden the undergraduate. Dresden designed a program for honors students at 
Swarthmore College that served as a model for highly selective, small, liberal arts col
leges. Kline suggested initiatives for rehabilitating graduate education after World War 
II that were realized shortly with the advent of the National Science Foundation. 

Reynolds had no direct ties to national leaders but the other four had links to the 
Chicago school initiated by E. H. Moore in 1 892. Just look at their Ph.D. supervisors 
in Table 1-0swald Veblen and R. L. Moore were prize graduates of E. H. Moore 
himself, while Oskar Bolza was the first professor hired by E. H. Moore. Mitchell 
was Oswald Veblen's first Ph.D. student at Princeton, Bennett his fourth, and both 
worked with Veblen at Aberdeen during WWI. (Bennett also served under Veblen 
during WWII; Mitchell was critically ill at the time.) Moreover, Kline played a pivotal 
role in the genesis of the Moore Method, and Dresden's program at Swarthmore was 
undoubtedly influenced by the teaching philosophy of E. H. Moore. 

No professional organization can survive without a significant community of rank
and-file enthusiasts who are receptive to the work of the leaders and who are able and 
willing to participate in all aspects. Our quintet played this role, standing on the lower 
rungs of the AMS ladder but ascending to the upper ranks of MAA leadership and 
contributing to its official journals-this MAGAZINE and the Monthly. When the MAA 
was founded in late 19 15 ,  Reynolds was 34 years old, Dresden 33,  Mitchell 30, Bennett 
27, and Kline 24. All five were young faculty members (at Lehigh, Wisconsin, Penn, 
Princeton, and Muhlenberg, respectively), yet only Reynolds, Dresden, and Bennett 
became charter members of the fledgling Association. Kline would join the next year 
after returning to Penn to be with R. L. Moore, another charter member. However, it 
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would be another 10  years before Mitchell would join. While Mitchell's membership 
in the MAA lapsed, the other four held theirs until the end of their lives. 

Locally, our quintet sparkled on the top rung of the Philadelphia Section ladder. 
The American mathematical community benefited greatly from their efforts and they 
deserve to be rescued from their present obscurity. 
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Farmer Ted Goes 3 0  
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In his recent paper entitled "Farmer Ted Goes Natural" [2], Greg Martin discusses the 
plight of Farmer Ted, who wants to minimize the cost of chicken wire to enclose a 
rectangular coop with a base of 190 square feet. However, Farmer Ted has difficulty 
purchasing 4,Jl90 feet of chicken wire because he is only able to purchase wire in 
integer lengths. After much deliberation, he decides to build an 1 1  foot x 17 foot coop 
( 1 87 square feet), which has the best cost-efficiency of any possible coop with integer 
side lengths and area 190 square feet. 

Here we add another dimension to the story of Farmer Ted. In recent years, Farmer 
Ted has helped numerous neighbors efficiently build chicken coops. Then one local 
farmer asked a question that intrigued him: The farmer wants to build an animal cage 
with a volume of up to 50 cubic feet. What is the most cost-effective way to do this 
with integer side lengths? 

Farmer Ted had begun to think in 30. 
Before analyzing the three-dimensional problem, we should briefly review some 

of Martin's work. He starts with the basic calculus optimization problem of finding 
the minimum perimeter of a rectangle given a fixed area. As many students know, the 
optimal shape is a square. Martin then offers this variation: Given a positive integer N, 
what are the dimensions of the rectangle with integer side lengths and area at most N 
whose area-to-perimeter ratio is largest among all such rectangles? 

In order to solve this problem, Martin makes the following definitions: Let s (n) = 
min(c + d) where cd = n and c, d E N. Equivalently, s (n) = min(d + njd) where 
d I n . This gives the minimum semiperimeter, or half of the actual perimeter, of a 
rectangle with area n with integer sides. Define F (n) = n Is (n) ,  which is the maximum 
ratio of area to semiperimeter for a given n .  (Using this expression, which is twice as 
large as the maximum ratio of area to perimeter, is more aesthetically pleasing and does 
not change the analysis.) Farmer Ted prefers to enclose 1 87 ft.2 rather than 1 90 ft.2 

because F( 1 87) = 1 87/28 > F(l90) = 190/29. 
This leads Martin to identify the set 

A = {n E N :  F(k) ::: F(n) for all k ::: n } , 

which lists the areas of integer rectangles such that no rectangle with smaller area 
has a greater area-to-semiperimeter ratio. By brute force, we can see that the first 59 
elements of A are 

A = { 1 , 2 , 3 , 4 , 6 , 8 , 9 ,  12, 15 ,  16, 1 8 , 20, 24, 25 , 28, 30, 35, 36, 40, 42, 48 , 49, 54, 
56, 60, 63 , 64, 70, 72, 77 , 80, 8 1 , 88, 90, 96, 99, 100, 108 , 1 10, 1 17 , 120, 1 2 1 ,  
1 30, 1 32, 140, 143 ,  144, 150, 154, 156, 165 ,  1 68 ,  169, 176, 1 80, 1 82, 192, 1 95 ,  
196 ,  . . .  } .  

Every square integer belongs to A; after all, the original calculus problem leads Farmer 
Ted to a square pen. Martin coined the term almost-squares for the elements of A. His 
main theorem allows us to enumerate the almost-squares. 
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THEOREM 1 .  (MARTIN) For any integer m :0:: 2, the set of almost-squares between 
(m - 1 )2 + 1 and m2 (inclusive) consists of two flocks, the first of which is 

{ (m + am ) (m - am - 1 ) ,  (m + am - l ) (m - am ) ,  . . .  , (m + l ) (m - 2) , m (m - 1 )  } ,  
where 

and the second of which is 

- lJ2m - 1 - 1 J am -
2 ' 

{ Cm + bm ) (m - bm ) ,  (m + bm - l ) (m - bm + 1 ) ,  . . .  , (m + 1 ) (m - 1 ) ,  m2 } , 

where 

The reader can observe the flocks between pairs of squares in our list. Martin's 
first corollary gives another, more interesting characterization of the almost-squares 
involving triangular numbers. These are numbers of the form tn = (;) = n (n - 1 ) /2. 
Defining T (x) as the number of triangular numbers not exceeding x,  we can state his 
first corollary. 

COROLLARY 1 .  (MARTIN) The almost-squares are precisely those integers that 
can be written in the form k(k + h), for some integers k :0:: 1 and 0 ::::: h ::::: T (k ) .  

Martin also produced a polynomial that asymptotically counts almost-squares and 
showed the existence of polynomial-time algorithms for many processes. 

The next dimens ion 

Now let us extend Martin's results into a third dimension. We pose the following prob
lem: given a positive integer N, find the dimensions of the rectangular box with (posi
tive) integer sides and volume at most N whose volume-to-surface-area ratio is largest 
among all such rectangular boxes. The other possible formulation would be to com
pare the volume of the box to the sum of the side lengths; we study the former, as it 
seems the more natural extension to consider. 

To begin, we must redefine some of the terms Martin used. As before, without 
changing the analysis, we work with semi-surface area, or half the actual surface area, 
to avoid repeatedly dividing by 2. First, we will define the minimum possible semi
surface area of a box of volume n to be 

s (n)  = min(xy + yz + xz) , 

or equivalently 

s (n)  = min(xy + njx + njy) , 

where xyz = n and x ,  y ,  z E N, 

where x, y E N and x I n ,  y I n .  

Let F (n) = njs (n) denote the ratio of volume to the minimum semi-surface area. 
We are interested in certain values of F(n)-those that are greater than or equal to all 
previous F (n)-so we will redefine the set A as 

A =  {n E N :  F(k) ::::: F(n) for all k ::::: n } . 
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The set A lists those volumes that, when factored properly to minimize s (n),  have 
a volume-to-surface-area ratio greater than or equal to that of any smaller volume. By 
using brute force, involving all possible factorizations for numbers up to 400, we can 
find and list the first 49 elements of A: 

A =  { 1 , 2 , 3 , 4 , 6 , 8 , 12 , 16 , 18 , 24, 27 , 32, 36, 45 , 48 , 54, 60, 64, 72, 75 , 
80, 90, 96, 100 , 1 12, 120, 125 , 140, 144, 1 50 , 1 68 , 175 , 1 80, 200, 210, 
216 , 240, 245 , 252, 280, 288, 294, 320, 324, 336, 343 , 378, 384, 392, . . . } .  

A longer list of members of A can also be found in the On-Line Encyclopedia of 
Integer Sequences [4] . 

We introduce terminology for the optimal side lengths that produce the minimum 
value for s (n) . Define the best-factored form of n to be the factorization x x y x z 
where n = xyz and the minimum of xy + xz + yz is achieved. 

One point of interest is that finding the best-factored form in three dimensions is 
not nearly as easy as in the two-dimensional case. In two dimensions, the smaller side 
is always the greatest factor of n that is less than .fii. In three dimensions, the natural 
extension would be to take the greatest factor less than ,ifii as one side, but this does 
not always work. Easy counterexamples arise from numbers that have a large prime 
factor, such as 536 (= 23 x 67) ; the best-factored form for this number is 2 x 4 x 67, 
even though 8 is the largest factor less than 03'6. However, counterexamples without 
large prime factors also exist, such as 108 (= 22 x 33) . The best-factored form for 108 
is 3 x 6 x 6, which does not include 4 = L � J . While L ,ifii J seems to be a factor 
in the best-factored form for every element of A, this remains to be proven, and is left 
as an open problem for the reader. Fortunately, our analysis will not require a method 
for finding the best-factored form of any integer. 

By brute force, we can rewrite the elements of A in their best-factored form: 

A =  { 1  X 1 X 1 ,  1 X 1 X 2, 1 X 1 X 3 , 1 X 2 X 2, 1 X 2 X 3 ,  2 X 2 X 2, 2 X 2 X 3 ,  
2 X 2 X 4, 2 X 3 X 3 ,  2 X 3 X 4 ,  3 X 3 X 3 ,  2 X 4 X 4, 3 X 3 X 4 ,  3 X 3 X 5 ,  
3 X 4 X 4, 3 X 3 X 6, 3 X 4 X 5 ,  4 X 4 X 4, 3 X 4 X 6, 3 X 5 X 5 ,  4 X 4 X 5 ,  
3 X 5 X 6, 4 X 4 X 6, 4 X 5 X 5 ,  4 X 4 X 7 , 4 X 5 X 6, 5 X 5 X 5 ,  4 X 5 X 7 , 
4 X 6 X 6, 5 X 5 X 6, 4 X 6 X 7 , 5 X 5 X 7 , 5 X 6 X 6 , 5 X 5 X 8 , 5 X 6 X 7 , 
6 X 6 X 6 , 5 X 6 X 8 ,  5 X 7 X 7 , 6 X 6 X 7 , 5 X 7 X 8 ,  6 X 6 X 8 , 6 X 7 X 7 , 
5 X 8 X 8 ,  6 X 6 X 9 , 6 X 7 X 8 , 7 X 7 X 7 , 6 X 7 X 9 , 6 X 8 X 8 , 7 X 7 X 8 ,  
. . .  } .  

One pattern we notice, as with almost -squares, i s  that the three side lengths are all 
almost (or exactly) equal. For this reason, we will call the elements of A almost-cubes. 

A quick glance at the list of almost-cubes in best-factored form shows that taking 
any two sides of an almost-cube, one seems to have the dimensions of an almost
square. But will this hold as the numbers continue to get larger? This next theorem 
confirms it. For the proof, it will help to notice that the volume to semi-surface area 
ratio of any rectangular box of dimensions n = xyz is 

xyz 
which simplifies to 

xy 
xy + xz + yz

' 
xyjz + x + y 

THEOREM 2 .  lfn = xyz is an almost-cube in best-factored form, then xy, xz, and 
yz are almost-squares in best-factored form. 

Proof By symmetry, it is enough to show that xy is an almost-square. Let n = xyz 
be an almost-cube, and let k = xy . Suppose that k is not an almost-square or that k is 
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not in best-factored form. Then there exist a, fJ E N  so that J.L = a{J � k and 

k J.L kJ.L kJ.L 
--- < , which easily gives ka + - < J.LX + - . 
x + kfx a + J.L/a a x 

However, by the definition of an almost-cube, since f.LZ � kz, 

k J.L ------- > 0 
(k/z) + x + (kfx) - (J.L/z) + a + (J.Lfa) 
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This simplifies to the opposite inequality from the one we derived above, so k = xy is 
an almost -square in best-factored form. • 

Unfortunately, being the product of numbers where each pair forms an almost
square is not a sufficient condition for being an almost-cube. Rectangular boxes such 
as 14 x 19  x 19, 1 8  x 22 x 24, and 19 x 23 x 25 all contain three pairs of almost
squares, but none of them are almost-cubes. 

Theorem 2 does imply that there is a limit to how much the largest side of an almost
cube can vary from the smallest side. As with Martin [2] , triangular numbers come into 
play. Recall that T (x) represents the number of triangular numbers not exceeding x .  

An immediate appeal to Corollary 1 gives us a way to write almost-cubes :  

COROLLARY 2 .  Almost-cubes can be written in the form k(k + h ) (k + j ), for some 
k, h ,  j E N with k ::: 1 and 0 � h � j � T (k).  

These upper bounds for h and j can be improved. Observation seems to show that 
0 � h � T (k + 1 ) - 1 ,  but even this tighter upper bound is not tight enough. The 
upper bound for j can also be improved. Since merely relating almost-cubes to almost
squares on two of their sides will not characterize almost-squares, we now attempt a 
characterization similar to Martin's. We begin by looking at some special members of 
the set of almost-cubes. 

Punctuation markers 

As the reader may have noticed, all of the numbers of the form m x m x m, (m - 1 )  x 
m x m,  and (m - 1 )  x (m - 1)  x m seem to be almost-cubes (as intuition suggests). 
Of course, there are others, but these three seem to be markers-a sort of punctuation 
of A. We will therefore call numbers of these three forms punctuation markers. This 
leads us to define a flock similar to Martin's flocks of almost-squares. A flock is the 
set of almost-cubes between (m - 1)3 + 1 and m (m - 1)2 , between m (m - 1)2 + 1 
and (m - 1)m2, or between (m - 1)m2 + 1 and m3 • We will refer to these as the first, 
second, and third flocks, respectively. If we wish to discuss all numbers k such that 
(m - 1 )3 < k � m (m - 1 )2 , without regard to whether they are almost-cubes or not, 
we will say k is an element of the range of the first flock (and similarly for the other 
two flocks) .  We can group A into these flocks and signify the end of a flock with a 
semicolon to help delineate them: 

A =  { 1  X 1 X 1 ;  1 X 1 X 2; 1 X 1 X 3, 1 X 2 X 2; 1 X 2 X 3, 2 X 2 X 2;  2 X 2 X 3 ;  
2 X 2 X 4 ,  2 X 3 X 3 ;  2 X 3 X 4 ,  3 X 3 X 3; 2 X 4 X 4 ,  3 X 3 X 4; 3 X 3 X 5,  
3 X 4 X 4; 3 X 3 X 6, 3 X 4 X 5, 4 X 4 X 4;  3 X 4 X 6, 3 X 5 X 5 ,  4 X 4 X 5 ;  
3 X 5 X 6 , 4 X 4 X 6 , 4 X 5 X 5;  4 X 4 X 7 , 4 X 5 X 6 , 5 X 5 X 5 ;  4 X 5 X 7 ,  
4 X 6 X 6 , 5 X 5 X 6; 4 X 6 X 7, 5 X 5 X 7 , 5 X 6 X 6; 5 X 5 X 8 , 5 X 6 X 7, 
6 X 6 X 6; 5 X 6 X 8, 5 X 7 X 7, 6 X 6 X 7; 5 X 7 X 8, 6 X 6 X 8, 6 X 7 X 7 ;  
5 X 8 X 8, 6 X 6 X 9 ,  6 X 7 X 8, 7 X 7 X 7; 6 X 7 X 9 ,  6 X 8 X 8 , 7 X 7 X 8; 

0 0 . } .  
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We show that each punctuation marker i s  an almost-cube. To do so we must begin 
with a few quick observations. First, 

s (n) :=: 3.if,;Z. ( 1 )  

This follows immediately from the arithmetic-geometric mean inequality or from ba
sic calculus. Inserting this inequality into the equation for F (n) gives us a second 
important inquality: 

� F (n) ::::: 3 .  (2) 

Armed with this knowledge, we can now prove that the punctuation markers are 
almost-cubes. Proving that m3 is an almost-cube is the easiest: To show that F (k) ::::: 
F (m3) for all k ::::: m3 , we simply apply equation (2) . This tells us that F (k) ::::: -0C /3 ::::: 
m/3 = F (m3) ,  which confirms our first lemma: 

LEMMA 1 .  Every positive integer of the form m 3 is an almost-cube. 

Martin used a similar process to prove that m2, m (m - 1) ,  and m2 - 1 are almost
squares [2] . Unfortunately, we cannot continue in the same manner. The upper bound 
for F (k) given by (2) is actually larger, for some k < m2 (m - 1 ) ,  than F(m2 (m - 1) ) .  
A similar situation arises for m (m - 1)2 • 

To tighten the upper bound for F (k) , we increase the lower bound for s (k) given 
by ( 1 ) . Let x E N be a divisor of k. A simple application of Lagrange multipliers shows 
that the expression xy + xz + yz, subject to the constraint k = xyz with y , z E �+, is 
minimized when y = z = ,fkfi. This gives us xy + xz + yz ::: kjx + 2../fX. 

If we compute the derivative of the single-variable function f (x) = kfx + 2../fX, 
then we see that it is a decreasing function of x on 0 < x < -0C. 

Let d be the largest divisor of k that is less than or equal to -0C. Also, let k = abc 
be the best-factored form of k, where a ::::: -0C. Since a ::::: d ::::: -0C, we have s (k) ::: 
f (a)  ::: f (d) = kfd + 2,Jkd. This is a tighter lower bound for s (k) than ( 1 ), which 
in turn gives us a tighter upper bound for F (k) than that given by(2), namely 

k 
F (k) < . - kjd + 2,Jkd 

This is the key to the following lemma. 

(3) 

LEMMA 2. Each positive integer of the form m3, m2 (m - 1 ), and m (m - 1)2 is an 
almost-cube. 

Proof. We will prove this by induction on m. Note that the first positive numbers of 
the form (m - 1)3 , m (m - 1)2 , and m2 (m - 1 ) ,  namely 1 ,  2, and 4, are almost-cubes. 
Also, note that F (m3) > F(m2 (m - 1) )  > F(m (m - 1 )2) > F ((m - 1 )3) for every 
m :=: 2. To complete our induction, we need to show that 

and 

F (m (m - 1)2) > F (k) whenever (m - 1)3 < k < m (m - 1)2 , 

F (m2 (m - 1 )) > F (k) whenever m (m - 1 )2 < k < m2 (m - 1 ) ,  

F (m3) > F(k) whenever m2 (m - 1 )  < k < m3 • 

The most difficult case is the first one, when (m - 1)3 < k < m (m - 1 )2 • In this case, 
let a = m (m - 1)2 - k, so that 1 ::::: a < (m - 1)2 . The largest possible factor of k 
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that is less than or equal to � is m - 1 .  Unfortunately, the simplest idea-taking the 
other two sides to be .jkj(m - 1)-would create a box with volume-to-surface-area 
ratio greater than F (m (m - 1)2) if a is small. Thus we need to carefully examine the 
possible integer divisors of k .  

Now, m - 1 will only divide k if i t  divides a . If m - 1 does not divide a,  then m - 2 
is the largest possible divisor less than or equal to �. so we can proceed using the 
bounds from (3). In this subcase, 

We must compare this to F (m(m - 1)2) = (m2 - m)/(3m - 1 ) .  Letting 

Jm' - 2m2 + m  - a  
X = ' m - 2  

we would like to establish the inequality 

x m2 - m  
--- < ---
2 + _x_ - 3m - 1 · m-2 

Solving for x gives us an equivalent inequality: x � m( l  + 1 / (m2 - 3m + 1 ) ) .  How
ever, replacing a by 1 in the definition of x shows that x � .jm2 + (m - 1)/ (m - 2) . 
Showing that .jm2 + (m - 1)/ (m - 2) � m(l  + 1/ (m2 - 3m +  1) )  is routine, so this 
subcase is proved. 

If m - 1 does divide a, then more work is involved. Now k has the form m3 -
2m2 + m - b(m - 1 ) ,  where 1 � b < m - 1 .  Dividing by m - 1 ,  we are left with the 
expression m2 - m - b, which is the product of the remaining divisors. The largest 
integer value less than ./m2 - m - b is m - 2, and this is the best possible choice for 
one of the remaining two factors. With these two factors determined, a little algebra 
shows that 

(m3 - 2m2 + m - b(m - l ) ) (m - 2) 
F (k) < . - 3m3 - 10m2 + ( 1 1 - 2b)m + 3b - 4  

We must compare this to F (m (m - 1 )2) = (m2 - m)/ (3m - 1 )  as above. Substituting 
1 for b, since that will maximize F(k), and cross-multiplying, produces the cubic 
inequality 0 � 3m3 - 9m2 + 8m - 2, which is true for all m :::: 2, and the second 
subcase is proved. 

When m (m - 1 )2 < k < m2(m - 1) ,  then let c = m3 - m2 - k, so that 1 � c < 

m2 - m .  The largest possible factor less than or equal to � is m - 1 .  As before, we 
compare 

m3 - m2 - c 
F(k) � -------;==== mLm2-c + 2(m - 1)  / m3-m2-c m- 1 V m- 1 

to F(m2 (m - 1) )  = (m2 - m)/(3m - 2) . Letting 

Jm' - m2 - c 
y = ' m - 1  
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we get the inequality 

y m2 - m  
---=----::-- < ---
2 + _Y_ - 3m - 2 ' m- 1 

MATH EMATICS MAGAZI N E  

which simplifies to y :::;: m .  But this i s  always true by the definition of y ,  which proves 
the secondase. 

The third case, when m2 (m - 1) < k < m3 , can be done in a similar fashion, or 
the result from Lemma 1 can be used. This completes the induction. Therefore, every 
positive integer of the form m3 , m2 (m - 1) ,  and m (m - 1 )2 is an almost-cube. • 

The characterization begins 

Now that we have established the end point of each flock, we would like to take a 
closer look at the flocks themselves. The first observation we make is that the sum 
of the three factors is constant within a given flock. Define p (n) = x + y + z where 
n = xyz is in best-factored form. As with Martin [2] , we want to determine which 
boxes of the "correct" p (n) are almost-cubes. 

First we make an easy observation. Simple calculus or the arithmetic-geometric 
mean inequality tells us that p(n) 2:: 3.y,i. 

Now we determine the largest possible n for a given value of p(n) .  For instance, 
if p(n) = p (m (m - 1 )2) = 3m - 2, we know that n = xy [(3m - 2) - x - y] .  We 
maximize this function in steps, first assuming that x is fixed; taking the derivative 
with respect to y,  we find that n is maximized when y = ( (3m - 2) - x)/2, which 
gives n = x ((3m - 2) - x)2 /2. We now take the derivative with respect to x and find 
that n is maximized when x = m - 2/3, but this is not an integer. Since we need 
all three factors to be integers, we look for the values of x nearest to m - 2/3 on 
either side that yield integer factors. If x = m ,  then the other two factors are both 
m - 1 .  If x = m - 1 ,  then y = m - 1/2 is not an integer. If x = m - 2, then the 
other two factors are both m. Thus, to find the largest possible n with p(n) = 3m - 2, 
we need only compare m(m - 1)2 = m3 - 2m2 + m with m2 (m - 2) = m3 - 2m2 • 
Thus, m (m - 1 )2 is the maximum volume for a box with integer side lengths and 
p(n) = 3m - 2. 

Similar work shows that the maximum volume obtainable with integer side lengths 
when p(n) = 3m - 1 is m2(m - 1) ;  and when p (n) = 3m, the maximum is m3 • These 
will be needed in the following lemma. 

LEMMA 3 . 

• lfn is an almost-cube in the first flock, then p (n)  = 3m - 2; 
• ifn is an almost-cube in the second flock, then p (n)  = 3m - 1 ;  
• if n  is an almost-cube in the third flock, then p (n)  = 3m. 

Proof Suppose that n is an almost-cube in the first flock; then, by definition of 
an almost-cube, (m - 1)/3 = F[(m - 1)3 ] :::;: F (n)  = njs (n) :::;: (m (m - 1)2) /s (n ) .  
This means that s (n)  :::;: 3m2 - 3m.  Now, if x + y + z is a s  large as  3m - 1 ,  then using 
calculus or our intuition we see that xy + xz + yz 2:: 3 ( (3m - 1)/3)2 • So we see that 
p(n) = 3m - 1 implies that s (n) 2:: 3m2 - 2m + 1 /3 ,  which is larger than our upper 
bound for s (n ) .  Therefore, p(n) < 3m - 1 .  The work preceeding the lemma shows 
that p(n) :::;: 3m - 3  implies n :::;: (m - 1)3 • Thus, 3m - 3  < p(n) < 3m - 1, and so 
p(n) = 3m - 2. 

The proofs for the other two cases use exactly the same process and are omitted 
�. . 
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Unfortunately, we once again have a necessary but not sufficient condition to be 
an almost-cube. Even if n has the right p(n) ,  n is not always an almost-cube. For 
example, let n = 40 = 2 x 4 x 5 . Now when m = 4, m (m - 1 )2 = 36 < 40 < 48 = 
m2 (m - 1 ) .  The sum of the factors for n = 40 gives p(40) = 1 1  = 3m - 1 ,  which 
lies within the bounds given in Lemma 3. However, n = 40 is not an almost-cube, as 
F(40) = 20/ 19  < 12/ 1 1  = F(36) . 

Next we need to show that given a value for p(n) ,  we can factor n in a  useful way. 
Conversely, we will also show that if we can factor n in this convenient way, then it 
has a given value for p(n) .  

LEMMA 4 .  

• A positive integer n in the range ofthefirstflock satisfies p (n)  = 3m - 2 if and 
only ifn = (m - a - 1 ) (m - b - 1 ) (m + a + b) for some integers a and b. 

• Similarly, a positive integer n in the range of the second flock satisfies p (n)  = 
3m - 1 if and only if n = (m - c - 1 )  (m - d) (m + c + d) for some integers c 
and d. 

• Finally, a positive integer n in the range of the third flock satisfies p (n)  = 3m 
if and only ifn = (m - e) (m - f)(m + e + f) for some integers e and f. 

Proof. Assume n lies in the range of the first flock and p(n) = 3m - 2. Since 
p (n) = 3m - 2 is the sum of factors in the best factorization of n ,  the factors must 
clearly have the form m - a  - 1 ,  m - b - 1 ,  and m + a  + b for some integers a and b. 
This proves one half of the first biconditional statement. 

Conversely, assume that n = (m - a - 1 ) (m - b - 1 ) (m + a + b) and in the range 
of the first flock. Now n > (m - 1 )3 implies p(n) > 3m - 3. The semi-surface area 
for n is S = 3m2 - 4m - a2 - b2 - ab - a - b + 1 .  Assume p(n)  = 3m - 1 .  By 
the previous lemma, we know s (n) ::: 3m2 - 2m + 1 /3 ,  so s (n) - S =::: 2m + a2 + 
b2 + ab + a + b - 2/3. Because of ordering, a ::: 0. This comes from arbitrarily as
signing the first term (m - a - 1) to be the smallest. The largest this term can be is 
m - 0 - 1 = m - 1 because making this term any larger will either require m - b - 1 
or m + a + b to be smaller than m - a - 1 ,  or for the volume to be larger than 
m (m - 1 )2 • 

Case (i) If b ::: 0, then s (n) - S > 0. This is a contradiction, because s (n)  is a 
lower bound for the semi-surface area. Therefore, p(n) < 3m - 1 .  

Case (ii) If b < 0, then b ::: -a/2 because of ordering. This comes from assign
ing the second term (m - b - 1) to be the middle of the three sides (not larger than 
(m + a + b) and not smaller than (m - a - 1 )). Now b2 + b ::: 0 since b is an integer. 

Also a2 + ab ::: 0 because I a  I ::: l b l .  Since 2m - 2/3 > 0 for every m ,  s (n)  -
S > 0. This is a contradiction as before. Therefore, p(n)  < 3m - 1 .  

Since 3m - 3  < p(n) < 3m - 1 ,  p(n)  = 3m - 2. This proves the first statement of 
the theorem. The latter two statements can be proven in exactly the same fashion and 
are omitted here. • 

Combining Lemmas 3 and 4, we know that an almost-cube n in the first flock has 
the form n = (m - a - 1 ) (m - b - 1 ) (m + a + b) . Thus, we need to set bounds on 
what a and b can be (similarly for c and d in the second flock and e and f in the third 
flock). As before, this will involve a little calculus and a lot of algebra. As a reminder, 
we order the three factors so that m - a - 1 ::::; m - b - 1 ::::; m + a  + b, and similarly 
for the other two flocks. This implies (among other things) that a ::: 0. 

We plan to determine how large a can be, as follows: First we determine the b value 
that, for a given a ,  yields the largest value for F(n). This will be when b is as negative 
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as  possible, which i s  bounded since we ordered the three sides. This will make the 
two larger sides as close as possible. We then substitute the value for b into F (n) =:: 
F[(m - 1 )3] and solve for a, where n = (m - a  - 1 ) (m - b - 1 ) (m + a +  b) . 

Let 

PI ,e = 3a3 + (6m)a2 + 4(m - 1 )a - 4(m - 1 )2 , 
PI ,o = 3a3 + (6m)a2 + (4m - 1 )a - 2(2m2 - 3m - 1 ) ,  
P2,e = (3m - 1)c3 + (6m2 + 3m - l)c2 + (4m2)c - 4(m3 - m2) ,  
P2,o = (3m - l )c3 + (6m2 + 3m - l )c2 + (8m2 - 3m +  1)c 

- (4m3 - 6m2 + 3m - 1 ) ,  
P3, e = (3m - 2)e3 + (6m2 - 3m)e2 - 4m3 , 
P3,o = (3m - 2)e3 + (6m2 - 3m)e2 + (2 - 3m)e - (4m3 - 2m2 + m) ,  

where in  each label Pi,j , i represents the appropriate flock and j signifies whether 
a, c, or e is even or odd. These polynomials will arise from our analysis of the various 
cases signified by i and j .  Let a;, j represent the greatest root of Pi,j · This root will 
give us our bounds for a , c, and e .  

LEMMA S .  
• Suppose n is in the first flock. If a is even, the upper bound for a is La1 ,eJ . If a 

is odd, the upper bound for a is La1 ,oJ · 
• Suppose n is in the second flock. If c is even, the upper bound for c is La2,eJ . If 

c is odd, the upper bound for c is La2,oJ · 
• Suppose n is in the third flock. If e is even, the upper bound for e is La3,eJ . lf e 

is odd, the upper bound for e  is La3,oJ .  
Proof Suppose that n = (m - a  - l ) (m - b - l ) (m + a  + b) i s  an almost-cube 

in the first flock. Our minimum for b occurs when b = L -a/2J (it will be d = 

L ( 1 - c)/2J and f = L ( l - e)j2j for the other two cases) .  We substitute b = -a/2 
or b = -(a + 1 )/2 according as a is even or odd. When a is even, the inequality 
F(n) =:: F[(m - 1 )3] is 

(m - a - l ) (m - (- � )  - l) (m + a + (- � )) 
(m - a - l) (m - (- � ) - 1) + (m - a - l) (m + a + (- �)) + (m - (- � ) - l) {m + a + (- �)) 

m - 1  
> --

3 
and it can be simplified so that 

is greater than or equal to ( 3 - 3m ) ( 1 - m ) 
4 a2 + -2- a +  (3m3 - 7m2 + 5m - 1 ) .  

Subtracting to one side, we get the inequality PI ,e :::: 0 .  This i s  true precisely when 
a :::: a 1 ,e ·  Since a is an integer, we take the greatest integer less than this root. When a 
is odd, we can solve the same inequality with b = -(a + 1 )/2 instead of b = -a/2, 
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giving 

(m - a - l ) (m - -a2-
1 - l ) (m + a + -a2-

1 ) 
(m - a  - l) (m - -a2-

1 - 1) + (m - a  - l ) (m + a + -a2-
1 ) + (m - -a2-

1 - l) (m + a + -a2-
1 ) 

m - 1 
2: -3-. 

This is true precisely when a is less than the largest root of the cubic p1 ,0 , which is a1 ,0 •  
The identical process may be applied to every other case mentioned in  the statement 
of the lemma. The algebra is very straightforward, so we omit it. • 

Now that we have established bounds for a, c, and e, we now seek to find bounds 
for b, d, and f. To do so, we will solve the appropriate inequalities for the variables b, 
d, and f. For example, for the first flock, we solve the inequality F (n) 2: F[(m - 1 )3 ] 
for b, where n = (m - a  - 1 ) (m - b - 1 ) (m + a + b) . The other flocks may be com
pleted similarly. 

Let 

q1 (a , m) = (2m + 3a - 2)b2 + (2am + 2m - 3a2 - 5a - 2)b 
- (m2 - 2a2m - 2am - 2m +  2a2 + 2a + 1 ) ,  

q2 (c, m) = (2m2 - 3cm - 3m + c + 1)d2 + (2cm2 - 3c2m - 3cm + c2 + c)d 

- (m3 - 2c2m2 - 2cm2 - m2 , 

and 

q3 (e, m) = (2m2 - 3em - m + 2e)f2 + (2em2 - 3e2m - em + 2e2)f 
- (m2 - 2e2m2 + e2m) . 

These polynomials come up in  our analysis of the first, second, and third flocks, 
respectively. Let g; (x , m) be the smaller root of q; (x , m) and let h; (x , m) be the larger 
root of q; (x , m) .  

LEMMA 6 .  

• For the first flock, 

max { L-a/2J , rgt (a , m)l } :::: b :::: min {a , Lh t (a , m)J } . 

• For the second flock, 

max { L( l  - c)/2J , r g2 (c, m)l }  :::: d :::: min { c + 1 ,  Lh2 (c, m)J } . 

• For the third flock, 

max { LO - e)/2J , rg3 (e , m)l } :::: J :::: min {e ,  Lh3 (e, m)J } . 

Proof First, we need to remember that because of ordering, L -a/2J :::: b :::: a , 
L( l  - c)/2J :::: d :::: c + 1 ,  and L ( l - e)j2J :::: f :::: e . By assigning the sides 
(m - b - 1 ) ,  (m - d) ,  and (m - f) to be the middle of the three side lengths of 
a rectangular box written in the form given in Lemma 4, these limits prevent this 
middle term from becoming larger than the last side or smaller than the first side. To 
complete the proof, simply solve the inequality 
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(m - a - l ) (m - b - l ) (m + a + b) 
(m - a - l ) (m - b - 1) + (m - a - l ) (m + a + b) + (m - b - l ) (m + a + b) 

m - 1  � -3- = F [(m - 1)3] 

for b in terms of a and m. Simplifying, we find that the quantity 

3(-m + a +  l)b2 + 3(-m(a + 1 )  + a (a + 2) + l)b 
+ 3 (m2(m - 2) - (a2 - a  - l)m + a2 + a) 

is greater than or equal to 

( 1 - m)b2 + (-am - m + a + l )b + (3m3 - 7m2 - a2m - am + 5m + a2 + a - 1 ) .  

This further simplifies to q 1 (a , m) ::;:: 0 .  This will b e  true when b i s  between the roots 
g1 (a , m) and h 1 (a , m) , which come from subtracting and adding the square root of the 
discriminant. This process may be repeated for the other two cases in exactly the same 
way to determine the values for g2 (c, m), h2 (c , m) , g3 (e , m) , and h3 (e , m). • 

The final step 

It may seem that we have established necessary and sufficient conditions for n to 
be an almost-cube. Unfortunately, this is not the case. When determining bounds for 
{a, b, c, d, e , f},  we always compared the value of F(n) with that of the previous flock 
leader ((m - 1 )3 , m (m - 1)2 , or m2(m - 1)) . However, there still remains the possi
bility of cancellation within the flock. Stated another way, given two potential almost
cubes in the same flock (meeting all the aforementioned conditions of an almost-cube), 
it may still be possible for F (n ! )  < F (n2) even if n2 < n 1 • 

One way to alleviate this problem would be to prove the following conjecture: 

For all a, b, c, x ,  y , z E N, if a + b + c = x + y + z and abc < x y z, then 
abc 1 1 xyz 

---------- = < - ----�----ab + ac + be .!. + .!. + .!. .!. + .!. + .!. xy + xz + yz 
a b c x y z 

Stated another way, given two pairs of three numbers, if their arithmetic means are 
equal and their geometric means satisfy an inequality, do their harmonic means satisfy 
a similar inequality? Not surprisingly, this is false. The first counterexample, generated 
by Martin [3] , was 

and 

a = 24, b = 392, c = 9584, 

x = 2 1 ,  y = 506, and z = 9473. 

This shows the general statement is  false, but the counterexample is quite obviously 
not an almost-cube. This begs the question: if the choices for a , b, c, x, y, and z 
are sufficiently close to each other as to generate a potential almost-cube, does the 
conjecture then hold? 

Unfortunately, once again the answer is no. Many more counterexamples were re
cently discovered by Matt DeLong [1] and these meet all the previous requirements 
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for an almost-cube. For example, if 

a =  3307, b = 3323, c = 3370, x = 3303 , y = 3329, and z = 3368, 

then 

a + b + c = x + y + z = 10000, 

abc = 37033472570 < 370334738 16 = xyz, and 

F(abc) = 1 1 1 1 .039919 . . .  > 1 1 1 1 .03989 . . . = F(xyz) . 
Also, if 

a = 3309, b = 3320, c = 337 1 ,  x = 3301 ,  y = 3332, and z = 3367, 

then 

a + b + c = x + y + z = 10000, 

abc = 37033401480 < 37033404044 = xyz, and 

F(abc) = 1 1 1 1 .03852 . . . > 1 1 1 1 .03846 . . .  = F(xyz) . 
These counterexamples lead us to our final condition, giving us our final set of 

necessary and sufficient criteria to determine whether a number n is an almost-cube. 
For computational reasons, we had hoped to find a characterization that would not 
require comparing any previous integers, but we are unable to accomplish this goal 
completely. Although we do not need to compare to all previous integers, we do need 
to compare to previous integers within the range of the same flock. 

THEOREM 3 .  Let n = xyz have one of the forms given by Lemma 4 where the 
appropriate variables a through f satisfy the constraints given in Lemmas 5 and 6. If 
F(n) ::: F (k)for all k = rst < n where r + s  + t  = x + y + z  and r, s , t E N, then n 
is an almost-cube. 

Proof. An n meeting the requirements of Lemmas 4, 5, and 6 will be eligible to be 
an almost-cube. If F(n) ::: F (k) for all k = abc < n where a +  b + c = x + y + z, 
then no cancellation within n 's flock occurs. Therefore, n is an almost-cube. • 

A natural conclusion 

We have now given necessary and sufficient conditions for an integer to be an almost
cube. While many of the results are not as elegant or compact as in the two-dimensional 
case, the topic is still a very interesting one to discuss .  

Some open problems remain possible areas of research in the future. Some of these 
areas relate to results that Martin was able to prove and can be extended to almost
cubes. Is there a nice way to find the greatest almost-cube not exceeding n ?  Is there a 
nice way to order almost-cubes? Is there a nice way to enumerate almost-cubes? The 
cancellation concerns would make these last two questions difficult to answer. If we 
could derive a function that enumerates almost-cubes, we could use it to address the 
density of almost-cubes. 

A somewhat more important problem deals with the bounds for a-f. The roots 
of the polynomials in Lemmas 5 and 6 are very cumbersome, and so they are not 
illuminating or easy to work with. Is there a nicer way to represent these values? Also, 
is it possible not to split apart the two cases for a, c, and e? 

We previously mentioned the difficulties of finding the best-factored form of a num
ber n . Is it true of every almost-cube, as it is not for general n , that the greatest factor 
less than 4"i is a factor in the best-factored form of n?  
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A final question depends on the very definition of how we constructed our almost
cubes. The more natural ratio to consider appeared to us to be volume to surface area, 
but it turned out our flocks were held together by the sum of the side lengths. If we 
had taken our original ratio to be F(n) = nj p(n) , the cancellation concerns within a 
flock would not have been an issue. Is there a more elegant way to describe these wire 
frames than some of the expressions found in the description of almost-cubes? 

To finish our story from the beginning . . .  
Farmer Ted began his meanderings into the three-dimensional realm of almost

cubes. He soon became fascinated by all the new discoveries he was making. He was 
able to tell his neighbor that the most efficient way to build his animal cage was to build 
a 48 ft.3 cage with side lengths of 3 ft. , 4 ft. ,  and 4 ft. His neighbor was so thrilled at 
the advice Farmer Ted was able to give him, Farmer Ted was made an integral part of 
the management of the whole farm. Naturally. 
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Linear algebra over rings-particularly over Z-is a fascinating topic that straddles 
course boundaries and can help bridge the present unnecessary gap between introduc
tions to algebra and number theory. Moreover, a brief introduction to integral linear 
algebra can be helpful in further studies. For example, in both coding theory and solid 
state physics one is led to study lattices over the integers-roughly speaking, periodic 
discrete arrays of points in space (a more precise definition will be given below)-for 
which the standard linear algebra curriculum, dealing only with spaces, is inadequate. 
We refer the reader to the books by Conway-Sloane [3] or Ebeling [6] for lattices in 
coding theory, and Kittel [7] or Senechal [14] for lattices in solid state physics. 

Following the introduction, we review inner product spaces and the representation 
of inner products by symmetric matrices. The inner products we study will not neces
sarily be positive definite. (Indeed, our coefficients will not always be real or complex 
numbers.)  In a background section, we introduce unimodular matrices over Z and then 
Z-lattices on rational inner product spaces ; and then we explore the fundamental role 
of unimodular matrices in connection with basis changes for lattices. 

The following section is the heart of the article. There we give a new perspective on 
Pythagorean triples through the medium of lattices on inner product spaces, using the 
machinery of the earlier sections. A Pythagorean triple is a triple (a , b, c) of integers 
such that a2 + b2 = c2 ; and the triple (a , b, c) is primitive if gcd(a , b, c) = 1 .  The 
construction of primitive Pythagorean triples, and in particular the demonstration that 
there are infinitely many of them, is a truly ancient subject and a standard topic in 
elementary number theory courses. 

We will give a new proof of a theorem from 1894 by Leonard Eugene Dickson (a 
theorem that appeared in Volume 1 of the American Mathematical Monthly [4]) on the 
representation of primitive Pythagorean triples-a representation that does not seem to 
be widely known today-and then deduce some consequences. Underlying our proof 
of Dickson's theorem is the observation that the entries in a primitive Pythagorean 
triple are the coefficients of certain vectors in an appropriate inner product space with 
respect to a particular basis ;  then changing to a more convenient basis instantly yields 
the description in Dickson's theorem. 

In the penultimate section, we will have a brief look at Pythagorean triples over 
other rings, and we'll conclude with remarks on other approaches to Pythagorean 
triples. 

Background 

We will introduce only those properties of lattices that we  need. For thorough introduc
tions to lattices on inner product spaces, see the books of Cassels [2] and O'Meara [10] . 
Basic notations :  Mn (R) denotes the set of all n x n matrices with entries in whatever 
domain R is under discussion; and GL.z (R) denotes the group of matrices in Mn (R) 
that have inverses also in Mn (R) . For example, 

( � ; ) E G£,z (R) but ( � ; ) ¢ GLn (Z) . 
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The expression (a1 , • • •  , an ) denotes a diagonal matrix with the listed elements as its 
diagonal. The symbols Z, �. and Ql respectively denote the integers, the real numbers, 
and the rational numbers. Finally, if R is a ring then R* denotes its group of units . 

Inner product spaces The dot product on �n is an important example of a wider 
class of useful functions that we will introduce in this section. Let V be an 
n-dimensional vector space over a field F of characteristic not 2. (The theory when 
char F = 2 is rather different, and we won't need it. )  A mapping B :  V x V --+  F is 
a bilinear form on V if it is linear in each variable when the other is held fixed. And B 
is symmetric if B (x ,  y) = B(y , x) for all x ,  y E V .  We will call a symmetric bilinear 
form an inner product, and the related mapping q : V --+ F defined by q (x) = B(x ,  x) 
is the quadratic form associated with B .  (Why quadratic? Because q (ax) = a2q (x) 
for all a E F.) With this additional structure V is said to be a quadratic space over F, 
a quadratic F -space, or an inner product space over F. 

EXAMPLES . 

(i) The term inner product is derived from the classical example in which B is the dot 
product on Euclidean space �n , though the term is used in dramatically different 
settings as well. And in this space we have q (x) = L xl , the squared length of 
X =  (x, , . . .  , Xn ) .  

(ii) On �4, define B(x ,  y) = x,y, + x2y2 + x3y3 - X4Y4 ·  The resulting quadratic 
�-space is Minkowski space, useful in special relativity. Notice that in this space, 
unlike the preceding example, there are nonzero vectors v-such as ( 1 ,  0, 0, I )
with the property that q (v) = 0. Vectors with this property in a qqadratic space 
are said to be isotropic. (Physicists call the collection of isotropic vectors in 
Minkowski space the light cone of the space.) 

Now suppose V is a quadratic F-space with basis B = {v 1 , • • •  , vn } ,  and let B be 
an inner product on V. The symmetric matrix A =  (aij ) E Mn (F) defined by aij = 
B(vi o vi ) is the Gram matrix of V with respect to B; we write V "'  A with respect to 
llll. Conversely, given the vector space V, a basis B = {v1 ,  • • •  , vn } ,  and your favorite 
symmetric matrix A =  (aij) E Mn (F), we can define a bilinear form B on V by setting 
B(vi , vi ) = aij and, more generally, by setting B(Li ai vi , Li Pi vi ) = Li,j aif3iaii 
for all ai , {3 i E F .  This gives V the structure of a quadratic F -space, and V "' A with 
respect to R 

Unimodular matrices Suppose A is an n x n matrix with integer entries. Under 
what conditions does A have an inverse whose entries are integers? That is, when is 
A E GLn (Z) ? Certainly, if A E GLn (Z) , then the equation AA-1 = In and the mul
tiplicative property of the determinant forces det A to be ± 1 .  Conversely, suppose 
det A = ± 1 .  Recall that the adjoint formula for A_ , expresses the entries of A_, as 
certain signed subdeterminants of A divided by det A .  From this it follows immediately 
that A - I E Mn (Z) .  Thus A E GLn (Z) if and only if det A E Z* = { ± 1 } .  Elements of 
GLn (Z) , which stands for the general linear group over Z, are called unimodular ma
trices over Z. 

Lattices on inner product spaces Assume V is an n-dimensional inner product 
space over Q, and for some k � n let B = { v1 , • • •  , vk } be a linearly independent subset 
of V. The set L of linear combinations of these vectors having integer coefficients is 
the Z-lattice in V with basis R In symbols :  L = Zv1 E9 · · · E9 Zvk . If k = n, and 
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hence L spans V, we say L i s  on V. [Note: In  solid state physics sometimes the word 
basis is given a different meaning. Namely, given a lattice in JR3 , imagine congruent 
configurations of atoms located at each of the lattice points, producing a space-filling 
crystal structure. The physicists call one of those configurations the "basis" associated 
with the crystal. ]  

If A is the Gram matrix of the inner product with respect to lffi, we write L "' A with 
respect to lffi . 

Now suppose L is a lattice on V, with lffi = {v1 , • • •  , Vn } a basis for L (and hence 
for V). Suppose lffi' = {vi ,  . . .  , v� } is another basis for V, with T = (t;i ) E GLn (CQ) 
the matrix for the transition lffi --+ lffi' ;  that is, vj = L; tii v; , for 1 ::: j ::: n . Then we 
claim that lffi' is a basis for L if and only if T E GLn (Z) . To see this, first suppose lffi' 
is a basis for L .  Then T E Mn (Z) because lffi' � L;  and since T-1 is the matrix for the 
transition lffi' --+  lffi we also have T-1 E Mn (Z) , proving the claim. Conversely, if T is 
unimodular, then lffi' is a basis for V contained in L ,  so lffi' spans a sublattice M of L .  
But if  T- 1 = (s;i ) then vi = L; s;i v; , hence lffi � M, and so  M = L ,  and we are done. 

It follows from this discussion that if w E L, say w = L; a; v; , then for w to extend 
to a basis for L it is necessary that gcd(a 1 , • • •  , an ) = 1 ;  this is because the transpose of 
(a1 , • • •  , an ) would serve as a column vector of some unimodular transition matrix and 
if there were a common integer divisor in the column, it would also be a divisor of the 
determinant. In fact this condition is sufficient as well, because every column vector of 
relatively prime integers can be completed to a unimodular matrix. (See Newman [9, 
pp. 1 3-14] or Rotman [13, pp. 260--261 ]  for a proof.) A vector w with this property is 
called a primitive vector of L .  

It follows that if  w i s  a primitive vector of L and a E CQ, then a w  E L if and only 
if a E Z. Notice also that every line (that is, ! -dimensional subspace) in V contains 
a primitive vector of L, and that vector is unique "up to sign," by which we mean, 
''up to factors in Z* = { ± 1 } ." To see this, suppose 0 =I= v = L; a; v; E V . Multiply 
v by a common denominator of the a; to get a vector L; a; V; E L, then divide by 
gcd(a 1 , • • •  , an ) to get a primitive vector w of L in the line CQv ; then the only primitive 
vectors of L in that line are of the form sv  with s E Z* . Incidentally, we have written 
Z* here instead of { ± 1 }  to facilitate the extension of these results to other rings, a topic 
we pursue later in this paper. 

Lattices and Pythagorean trip les 

Suppose V is a 3-dimensional quadratic space over CQ with basis lffi = {vt . v2 , v3 } ,  
and suppose further that V "' ( 1 ,  1 ,  - 1 )  with respect to lffi. Let L = Zv1 EB Zv2 EB Zv3 , 
and suppose v = av1 + bv2 + cv3 E L.  Then q (v) = a2 + b2 - c2 • Therefore (a , b , c) 
is a Pythagorean triple if and only if v is isotropic (that is, q (v) = 0); and (a , b, c) is 
primitive if and only if v is a primitive vector in L .  Thus determining the primitive 
Pythagorean triples is equivalent to determining the primitive isotropic vectors in L. 

Now define a new basis lffi' = {w1 , w2 , w3 } for L by 

Wt = Vt + V3 , W2 = V2 + V3 , and W3 = Vt + V2 + V3 . 

Here w1 and w2 are clearly primitive isotropic vectors, so we're on the right track! And 
the fact that lffi' is a basis for L follows from the observation that the transition matrix ( 1 0 

T = 0 1 
1 1 
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for the change llll --+ llll' i s  unimodular. If w = aw1 + bw2 + cw3 = (a + c) v1 + 
(b + c) v2 + (a +  b + c) v3, then q (w) = c2 - 2ab. Thus, we have 

L '"'-'  ( -� -� � )  with respect to {w , , w2 , w3 } .  
0 0 1 

This new description of L will turn out to yield the characterization of primitive 
Pythagorean triples that we are after, because it will enable us to systematically list 
primitive isotropic vectors of L and their associated Pythagorean triples. (The list is 
infinite; we will truncate due to exhaustion, not because we don't know how to extend 
our list. ) 

If v = rw1 + sw2 + tw3 then q (v) = -2rs + t2 , hence 

v is isotropic {:::::::} t2 = 2r s . 
I t  follows that v i s  primitive and isotropic if  and only if  t2 = 2r s and gcd(r, s) = 1 .  
Assuming these conditions to hold, then 

and therefore 

v = rw1 + sw2 + tw3 
= r (v, + v3) + s (v2 + v3) + t (v, + v2 + v3) 
= (r + t)v1 + (s + t)v2 + (r + s + t )v3 

(r + t , s + t , r + s + t) 
is the associated primitive Pythagorean triple. We have now proved the following result 
of Dickson [4] : 

THEOREM. The triple (a , b, c) E :l? is a primitive Pythagorean triple if and only 
if 

(a , b, c) = (r + t , s + t , r + s + t) 
for some integers r, s ,  t satisfying gcd(r, s) = 1 and t2 = 2rs. Moreover, the corre
spondence (a , b , c) � (r, s ,  t) is a bijection. 

Notice that the primitive isotropic vectors ±w1 correspond via the theorem to the 
trivial Pythagorean triples (± 1 ,  0, ± 1 ) ;  similarly, the vectors ±w2 correspond to the 
triples (0, ± 1 ,  ± 1 ) .  

In exhibiting primitive Pythagorean triples, as i n  the accompanying table, one is 
usually interested only in Pythagorean triples (a , b, c) = (r + t, s + t, r + s + t) for 
which a ,  b , c are all positive. Clearly this is the case if r, s ,  t are all positive. Con
versely, if a ,  b, c are positive then we claim that r, s ,  t are positive as well. The in
equalities a < c and b < c imply s > 0 and r > 0, respectively. Suppose t :::: 0. Since 
r + t = a > 0, we have r > -t =::: 0; similarly, s > -t . Hence r s > t2 , contradicting 
the fact that 2r s = t2 . Thus r, s ,  and t must all be positive, as claimed. 

Also, notice that the conditions gcd(r, s) = 1 and t2 = 2r s in the theorem force t 
to be even and one of r, s to be twice a square and the other an odd square. In the 
table all these conditions are in place, with t growing as we move from top to bottom. 
Interchanging given values of r and s would just interchange the associated a and b, so 
we will assume throughout that r > s ,  hence obtaining a > b. Except for that, for each 
value of t all the possibilities for r and s are displayed. If a given t has k distinct prime 
divisors, then there are 2k ways to choose positive r and s satisfying the conditions of 
the theorem, and hence 2k-I lines associated with t in the table. 
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TAB L E  1 :  Pythagorean trip les l i sted i n  
order of t 

t2 /2 r s (a , b , c) 

2 2 2 1 ( 4,  3 ,  5 )  
4 8 8 1 ( 12 ,  5 ,  13)  
6 1 8  18  1 ( 24, 7 ,  25) 

9 2 ( 1 5 ,  8 ,  17)  
8 32 32 1 ( 40, 9 ,  4 1 )  

10  50 50 1 ( 60, 1 1 ,  6 1 )  
25 2 ( 35,  12 ,  37) 

12 72 72 1 ( 84, 1 3 ,  85) 
9 8 ( 2 1 ,  20, 29) 

14 98 98 1 ( 1 12 ,  15 ,  1 1 3) 
49 2 ( 63, 16,  65) 

16  128 128 1 ( 144, 17 ,  145) 
1 8  162 162 1 ( 180, 19, 1 8 1 )  

8 1  2 ( 99, 20, 101)  
20 200 200 1 (220, 2 1 ,  22 1 )  

25 8 ( 45 , 28, 53) 
22 242 242 1 (264, 23, 265) 

121  2 ( 143 , 24, 145) 
24 288 288 1 (3 12 ,  25 , 3 13) 

32 9 ( 56, 33,  65) 
26 338 338 1 (364, 27' 365) 

169 2 ( 195 , 28, 197) 
28 392 392 1 (420, 29, 42 1 )  

49 8 ( 77 , 36, 85) 
30 450 450 1 (480, 3 1 ,  48 1 )  

225 2 (255 , 32, 257) 
50 9 ( 80, 39, 89) 
25 18  ( 55 ,  48 ,  73) 

32 5 12  5 12  1 (544, 33,  545) 

REMARK. If (r, s, t) satisfies the conditions of the theorem (that is, gcd(r, s) = 1 
and t2 = 2r s) and A belongs to the multiplicative monoid 

{A E Z I gcd(A , t) = 1 }  

then (r, A2s ,  At) and (A2r, s ,  At) also satisfy the theorem conditions and therefore again 
lead to primitive Pythagorean triples. For example, from (r, s ,  t) = (2, 1 ,  2) one gets 
the Pythagorean triple (4, 3 ,  5) (the top line inside the table) ; and then the choice 
A =  3 gives (r, A2s ,  At) = (2, 9, 6) , yielding the Pythagorean triple (8, 15 ,  17) ,  while 
(A2r, s ,  J...t) = ( 1 8 ,  1 ,  6) produces (24 , 7, 25) . Similarly, the choice A =  5 leads from 
the Pythagorean triple (4, 3 ,  5) to the triples ( 12 , 35, 7) and (60, 1 1 ,  6 1 ) .  This suggests 
some graphical and algebraic structures on the set of primitive Pythagorean triples, 
topics explored much more fully in the recent paper by McCullough [8] . We will refer 
again to McCullough's work in the final section. 

The observation that all the triples we have produced have the form (a , b, a + s) 
leads to the following corollary. 

COROLLARY 1 .  Suppose s is a positive integer that is either an odd square or 
twice a square. Then there are infinitely many primitive Pythagorean triples of the 
form (a , b, a + s) with a ,  b > 0. 



2 1 0  MATHEMATICS MAGAZI N E  

Proof Let r be any positive integer relatively prime to s having the property that 
2r s is a square, and set t = ../fJS. Then from the theorem it follows that 

(a , b ,  c) = (r + t ,  s + t ,  r + t + s )  

i s  a primitive Pythagorean triple. Since there are infinitely many possibilities for r ,  we 
are done. • 

Given a primitive Pythagorean triple (a , b ,  c) , the associated integers r, s ,  t are 
given by 

t = a + b - c, r = c - b ,  and s = c - a . 

In Corollary 1 we used conditions on r and s to show existence of certain Pythagorean 
triples. Now let's move in the opposite direction, starting with known information on 
Pythagorean triples . 

COROLLARY 2 .  There are infinitely many pairs of consecutive positive integers 
such that one is an odd square and the other is twice a square. 

Proof It was shown by Fermat that there are infinitely many Pythagorean triples 
(a , b, c) such that a - b = ± 1 .  (Sierpinski [15, Chapter II, §4] gives the proof.) But 
with the associated r, s as in our theorem we then have r - s = a - b = ± 1 ,  so the 
pairs {r, s }  satisfy the conclusion. • 

How can we generate the pairs {r, s }  whose existence is guaranteed in Corollary 2? 
Our results give a bijection between these pairs and the Pythagorean triples (a , b,  c) of 
positive integers for which a - b = ± 1. Fermat showed that the full sequence of these 
Pythagorean triples (except for interchanges of a and b) can be produced as follows. 
Set Tt = (3,  4, 5) ;  and having produced Tn = (an , bn , Cn) with an - bn = ± 1 ,  define 
Tn+1 = (an+ I ,  bn+1 , Cn+t )  by the equations 

With the sequence { Tn lnEN in hand, we can produce the sequence of pairs {rn , sn lnEN by 
the formulas rn = Cn - bn and Sn = Cn - an . Here is a table with the first few values. 

n an bn Cn rn Sn 

1 3 4 5 1 2 
2 20 21 29 8 = 2 . 22 9 = 32 
3 1 19 120 169 50 = 2 . 52 49 = 72 
4 696 697 985 288 = 2 . 122 289 = 172 
5 4059 4060 5741 168 1  = 4 12 1682 = 2 . 292 
6 23660 23661 33461 9801 = 992 9800 = 2 . 702 
7 1 37903 1 37904 195025 57 12 1  = 2392 57 122 = 2 . 1692 
8 803760 803761 1 136689 332928 = 2 . 4082 332929 = 5772 

We note that Corollary 2 is not new. In fact, the Diophantine equations of the form 
x2 - Dy2 = ± 1 ,  with D a nonsquare positive integer, are the Pell equations, and their 
study has a lengthy, rich, and multifaceted history. It is well known that a Pell equa
tion has infinitely many integer solutions (in fact, the solutions to x2 - Dy2 = 1 form 
an infinite cyclic group with respect to a suitable multiplication); and when D = 2, 
Corollary 2 is an instance of this theorem. Texts by Sierpinski [15, Chapter 2, § 1 7] ,  
Silverman [16, Chapters 29-3 1 ] ,  and Burton [1, Chapter 14] all give the details. A s  an 
illustration of the history, we note that line 8 of the preceding table leads to 577 j 408 as 
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an approximation of �. an estimate known to the Hindu mathematician Baudhayana 
around 400 B .C .E .  See Dickson's History of the Theory of Numbers [5, pp. 341-400] , 
for more of this kind of background. Also see the references in Robson [12] . 

Other rings 

What about Pythagorean triples over other commutative rings? The reader can easily 
check that if R is any commutative ring, and elements r, s, t E R satisfy the equa
tion t2 = 2rs that emerged in the preceding section, then (a , b, c) = (r + t ,  s + t ,  
r + s + t )  i s  a Pythagorean triple; that is, a2 + b2 = c2 . There remains the question of 
whether these are all the Pythagorean triples over R, and also the issue of primitivity. 
We will not pursue these matters over arbitrary commutative rings, but here are a few 
observations. 

First note that if char R = 2, then the Pythagorean triples are just the triples 
(a , b, a +  b) E R3 , so the subject is trivial. 

Now suppose char R =I= 2, and suppose further that R is a principal ideal domain 
with quotient field F =I= R. Then the material on Z-lattices in the early sections, 
through the theorem, carries over virtually word for word using R instead of Z and F 
instead of Q. Thus we have R-lattices on quadratic F -spaces, unimodular R-matrices, 
primitive vectors, and so on; and in particular the theorem holds in this wider con
text. Also note that if (a , b ,  c) is a primitive Pythagorean triple in R3 , then so are 
(a (a) , a (b) , a (c)) for every automorphism a of R and (ea , sb, sc) for all s E R* .  
And a primitive Pythagorean triple over any principal ideal domain that is a subring of 
R is a primitive Pythagorean triple over R as well. 

EXAMPLE 1 .  Suppose R = k [x] ,  with k a field of characteristic not 2. We want to 
choose instances of (r, s ,  t) satisfying the conditions of our theorem and use these to 
construct primitive Pythagorean triples over R.  Here, since 2 is a unit, the word "even" 
is redundant. Hence, to construct nontrivial triples we can let t be any nonzero element 
of k[x] .  

(i) Suppose t = 1 .  (So without having made any further choices i t  is already clear 
that any resulting Pythagorean triple will be in k3 .) Choose r E k* = k - {0} at 
random, and put s = 1 j2r . Then upon writing down (r + 1 ,  s + 1 ,  r + s + 1 )  and 
clearing denominators to simplify our expression, we get the associated primitive 
Pythagorean triple 

(2r2 + 2r, 2r + 1 ,  2r2 + 2r + 1 )  

Here "clearing denominators" did not fundamentally change the triple, since it 
meant multiplying each term of the triple by a common element of R* = k* .  In 
particular, it preserved the primitivity of the triple. 

(ii) Here is a short table in the style of the table of the preceding section with some 
further examples over k[x] .  (To conserve space, we omit the column for t2 /2.) 

r s (a ,  b , c) 

x2 
X 

2 
1 (x2 + 2x , 2x + 2, x2 + 2x + 2) 

x (x + 1 )  
x2 (x + 1 )2 

(x4 + 2x3 + 3x2 + 2x , 2x2 + 2x + 2, x4 + 2x3 + 3x2 + 2x + 2) 
2 

x2 
(x + If (3x2 + 2x , 4x2 + 6x + 2, 5x2 + 6x + 2) 

2 
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EXAMPLE 2 . R = Z[i] ,  the ring of Gaussian integers. Here, a s  over Z,  we must 
have 2 I t2 • This is equivalent to the condition ( 1  + i )  I t ,  since 2 is an associate 
of ( 1  + i )2 and 1 + i is prime. (See Pollard-Diamond [11, Chapter 2] .) In keeping 
with the remarks at the start of this section, in the following short table of primitive 
Pythagorean triples over Z[i] with I t  I small, we will omit triples in Z3 and conjugates 
of listed triples. Also, if (a , b, c) has been listed, then (a , ci ,  bi)  and (c, ai ,  bi) (and 
other sirtiitar1y derived triples) are automatically qualified for listing as well, and hence 
are omitted from the table. Finally, we omit triples in which some entry is 0. 

t2/2 r s (a , b , c) 

1 + i  i 1 ( 1  + 2i , 2 + i ,  2 + 2i ) 
2 2 2i -i (2 + 2i , 2 - i ,  2 + i) 

2 + 2i 4i 4i 1 (2 + 6i , 3 + 2i , 3 + 6i) 
3 + i  4 + 3i 4 + 3i 1 (7 + 4i , 4 + i ,  8 + 4i ) 

3 + 9i -36 + 27i -36 + 27i 1 ( -33 + 36i, 4 + 9i, -32 + 36i) 
3 + 4i 9i (6 + 13i ,  3 + 1 8i ,  6 + 22i ) 

Other approaches to Pythagorean trip les 

Let's conclude by briefly reconciling the description of primitive Pythagorean triples 
over Z given in this article with other treatments. According to our theorem and 
the subsequent paragraph, the primitive triples with positive entries have the form 
(a , b ,  c) = (r + t ,  s + t ,  r + s + t) with r = 2u2 and s = v2 (or vice versa) for some 
u ,  v E Z, with v odd. Moreover t2 = 2rs = 4u2v2 , and so t =  2uv .  Now set m = 
u + v and n = u . Then it is easily checked that 

(a , b, c) = (2mn , m2 - n2 , m2 + n2) .  

This i s  the usual representation of primitive Pythagorean triples found in the literature. 
See Burton [1] ,  for example. 

Quite a different approach to Pythagorean triples can be found in the recent work 
of McCullough [8] . (Also see the references in that paper.) As we have mentioned, 
from the equation (a , b ,  c) =  (r + t ,  s + t ,  r + s + t) in our theorem, we have t = 
a + b - c, r = c - b, and s = c - a . When a ,  b > 0, the value t is what McCullough 
calls the excess of the triple: the amount by which the sum of the leg lengths of a 
right triangle exceeds the length of the hypoteneuse; and r is McCullough's height. 
McCullough uses the excess and height to derive a parameterization for triples that 
ultimately leads to a group structure on the collection of primitive Pythagorean triples. 

One can also approach Pythagorean triples through the study of integral points on 
curves, and the reader can see an introduction to this approach in Silverman [16, Chap
ter 3] .  

Whether one prefers to produce Pythagorean triples by considering lattices on inner 
product spaces, as has been our approach, or by some other method, the remarkable 
diversity of possibilities is certainly a testament to the continuing appeal of the subject. 
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Proof Without  Words :  Viv i an i 's Theorem 

In  an equilateral triangle, the sum of  the distances from any interior point to the three 
sides is equal to the altitude of the triangle. 
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We consider the following interesting "fitting" question, asked recently by Jerrard 
et al. [7] : 

Wafer in a box. What is the radius of the largest disk that fits in a given box? 

An answer would provide a necessary and sufficient condition on the positive reals 
a, b, c, and p for a disk of radius p to fit in an a x b x c box, in the spirit of Post's 
1993 necessary and sufficient condition on the six sides for one triangle to fit into 
another [8] . Our argument makes use of the "penny in a comer" problem from the 
1948 William Lowell Putnam Mathematical Competition [9] , for which we give a 
simple solution. 

Preliminaries It will be convenient to call a closed disk with zero thickness in JR3 

a wafer and to think of it as a thin tile that one can move physically in space. We say 
that the wafer w of radius p fits in the a x b x c box if the box has a subset that is 
geometrically congruent to w. 

We begin with a useful preliminary observation: If a wafer fits in a box in any way 
whatsoever, then it also fits in the box with its center at the center of symmetry of 
the box. Indeed, if a wafer w lies in the box, then the wafer w' obtained by reflecting 
it through the center S of symmetry of the box also lies in the box (FIGURE 1 ) and 
(by convexity) so does the cylinder having w and w' as ends. The midsection of this 
cylinder (parallel to and midway between the end disks) is a wafer with center at S 
that is congruent to w, and it clearly lies in the box. 

Figure 1 Centeri ng 

We say that a wafer w is centered if its center lies at the center S of symmetry 
of the box. The radius p of a centered wafer that fits in an a x b x c box clearly 

2 1 4  
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cannot exceed the distance from the center S to any edge of the box, and we have the 
inequality 

p :::: � min { J a2 + b2 , J b2 + c2 , J c2 + a2 } . ( 1 )  

(Indeed, the projection o f  the wafer onto a face o f  the box i s  an ellipse-possibly 
degenerate-whose major axis is equal to the diameter of the wafer.) 

Compactness considerations show that there is a largest wafer that fits in the box, 
and we may suppose that it is centered. A wafer that lies entirely in the interior of the 
box is obviously not maximal. If a centered wafer touches one face of the box, then 
it must also touch the face opposite, at the point symmetrically located. No centered 
wafer that touches just two opposite faces of the box can be maximal, because a small 
rotation about a suitable axis through S would move it into the interior of the box. Con
sequently there are just two possibilities for a maximal centered wafer: ( 1 )  it touches 
exactly four faces (two pairs of opposite faces) of the box, or (2) it touches all six faces 
of the box. 

Finally, suppose a centered wafer w with radius p touches both x x y faces of an a x b x c box (where (x , y ,  z) is a permutation of (a , b , c)). Then p must be at least 
the distance to that face:  

1 
P > - z . - 2 

(2) 

Long boxes At this point it is convenient to separate long boxes from short ones. 
Suppose the notation is chosen so that c is the longest edge. We call the box long if 
c > J a2 + b2. For a long box, inequality ( 1 )  becomes 

P :::: �Ja2 + b2 . (3) 

If a maximal centered wafer w of radius p touches the two a x b faces of a long box, 
then it follows from (2) and (3) that 

c > J a2 + b2 ::: 2p ::: c , 

a contradiction. Consequently a maximal centered wafer in a long box touches just the 
two a x c faces and the two b x c faces. A wafer of radius ! J a2 + b2 fits diagonally 
(FIGURE 2), and according to (3) no larger wafer fits. It follows that the largest wafer 
that fits in a long box with c > J a2 + b2 has radius 

Figure 2 Largest wafer touching four sides 

(4) 
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Short boxes Call an a x b x c box with longest edge c short if c ::: ,J a2 + b2 . Our 
analysis of this case depends on a 1 948 Putnam problem known as the "penny in a 
comer" problem [9] : 

Penny in a corner. Let p be a given positive real number. Find the locus of the 
center of a disk of radius p in the first octant that moves so as always to remain 
tangent to all three coordinate planes. 

z 

y 

X 

Figure 3 The locus of the center 

The locus proves to be the portion L:p of the sphere of radius p� that lies in the 
cube with one vertex at the origin and the opposite vertex at the point (p , p , p) ,  as 
shown in FIGURE 3. A proof can be found in Gleason et al . [5] , but for the sake of 
completeness we sketch a somewhat simpler argument. Our reasoning depends on the 
following elementary result: 

LEMMA 1 .  Suppose a plane ]"{ with unit normal n = (l , m , n) passes though a 
point P (p , q ,  r) and meets the coordinate xy-plane in a line w. Let Q be the foot of 
the perpendicular from P to w (FIGURE 4). Then 

r = PQ� . 

Figure 4 The key fact 

(5) 

Proof Let R be the point (p , q, 0) , the foot of the perpendicular from P to the 
xy-plane, and let y be the angle between the normal n and the z-axis, so that n = 
cos y .  Since QR, QP, and n all lie in the plane perpendicular to w through P ,  we 
see that L_QPR = 90° - y ,  and so in right triangle PRQ, r = PR = PQ cos L_QPR = 
PQ sin y = PQ� . • 
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Now suppose a wafer w of radius p and center P = (p ,  q ,  r) in the first octant is 

tangent to all three coordinate planes, let n = (l , m, n)  be the outward normal of the 
plane rr of the wafer, and assume initially that lmn =/= 0. Then rr meets the coordinate 
planes x = 0, y = 0, and z = 0 in lines u, v, and w .  The center P of w is to be 
at distance p from each of these lines, and it follows from the lemma that P has 
coordinates 

(6) 

a formula that plainly holds even when lmn = 0. Solving for the normal shows that ( I  1 1 ) n =  - Jp2 - p2 , -Jp2 - q2 , - Jp2 - r2 . 
p p p 

The results claimed follow immediately: 

(7) 

LEMMA 2 . (PENNY IN A CORNER) Let p be a given positive real number. The 
locus of the center P of a disk of radius p in the first octant that is tangent to all three 
coordinate planes is the portion :EP of the sphere of radius p../2 centered at the origin 
that lies in the cube whose opposite corners are (0, 0, 0) and (p , p ,  p) (FIGURE 3) .  

Proof From (6)  we see that P lies in the cube, and from (7) we conclude that p2 + 
q2 + r2 = 2p2 because n is a unit normal. Conversely, observe that if P = (p ,  q ,  r)  is 
any interior point of :Ep and n is defined by (7), then the plane through P with normal 
n meets the coordinate planes in lines u ,  v, and w each of which is at distance p from 
P (Lemma 1 ) .  An analogous argument can be given at the boundary points of :EP . • 

We show next that a maximal centered wafer in a short box must touch all six faces 
of the box: 

LEMMA 3 .  If a centered wafer in a short box touches fewer than six faces of the 
box, then it is not maximal. 

Proof The question is whether a centered wafer w that touches just four faces of 
the box can be maximal. Suppose a centered wafer w touches both a x c faces and 
both b x c faces of the box. The projection of w into the a x b face is an ellipse
possibly degenerate-that touches all four edges of that face. The wafer itself lies in 
the right elliptic cylinder over that ellipse, and it has a diameter lying over, and parallel 
to, the major axis of that ellipse (FIGURE 5) .  If w touches neither of the a x b faces, 
a suitable small rotation about that diameter (dashed in FIGURE 5) moves it so that it 

c 

b 

Figure 5 Proof of Lem ma 3 
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has at most two points of contact with the box, showing that it i s  not maximal. (We 
thank one of the referees for suggesting this nice geometric argument.) • 

Finally, suppose the short a x b x c box lies in coordinate 3-space JR3 with one 
comer at the origin, the adjacent edges along the positive coordinate axes, and the 
opposite comer at the point (x ,  y, z) ,  where (x , y ,  z) is a permutation of (a , b ,  c) . 
Let w be a centered wafer of radius p that lies in the box and touches all six faces 
of the box. Then, in particular, w touches all three coordinate planes, so the center 
S = (tx , �y ,  �z) of w must lie on the surface :Ep (according to Lemma 2). It follows 
that 

and 

p = J a2 + �2 + c2
. (8) 

This is the radius of the largest wafer that fits in the short box. Note that according 
to (7), the plane of the wafer whose radius is given by (8) has unit normal 

Conclusions We summarize our results in the following theorem. 

THEOREM. The largest wafer that fits in an a x b x c box with longest edge c has 
radius { !Jaz + b2 

P- �  ir + � + c
' 

( 10) 

In the first case, there are infinitely many maximal wafers, exactly two of which are 
centered. In the second case, there are exactly four maximal wafers, and they are 
necessarily centered. 

Proof The result for a long box is ( 4 ). For a short box, exactly one maximum wafer, 
whose radius is given by (8), is associated with each of the four pairs of opposite 
vertices, as described above. • 

To rephrase, if a short box is placed with one comer at the origin and the oppo
site comer at (a , b, c) , then the four unit normals are formed by choosing the signs 
(+, + , +) ,  (- , +, +), (+, - , +) , and (+, +. -) in 

For example, the four maximal wafers in a 5 x 7 x 8 box have radius � .J69 � 

4. 1533 1 .  Two of them are pictured in FIGURE 6; the other two are the mirror images 
of these in the horizontal medial plane. 
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Figure 6 Two of the four max imal wafers 

2 1 9  

Concluding remarks The question of finding the radius of the largest disk that fits 
in a cube, or, more generally, in a box, has been around for a long time. For a cube 
it is well known that there are four such maximal disks, one inscribed in each of the 
cube's  four regular-hexagonal cross-sections (see Shklarsky et al. [10]) .  For a box, 
the solution is more recent. Although we learned of it only after the present note was 
accepted for publication, the first published solution was apparently in 1 998, when 
Everett et al . [4] considered the question already in JRd . 

Analogous notions in higher dimensions play an important role in problems in com
puter science and in mathematical programming. For a glimpse of this active area of 
research in computational geometry, see, for example, Gritzmann and Klee [6] . For 
each j with 1 :S j :S d, a }-ball of radius p in JRd is a set geometrically congruent to l (x1 , x2 , . . .  , xd) : t x; :s p2 and X; = O for j < i :S d l 

t = l  

and a } -cylinder of  radius p is a set geometrically congruent to I (x, x, , . . .  , x,) : t x! :S p' and - oo < X; < oo for j < i :s d ] · 

The inner }-radius rj (K) of the convex body K is the largest radius of a } -ball that 
fits in K ,  and the outer j -radius R j (K) is the smallest radius of a } -cylinder that con
tains K. Gritzmann and Klee, working more generally in Minkowski space, develop 
many basic algebraic and geometric properties of these radii, among them the follow
ing elegant duality: if K is a symmetric convex body and K0 is its polar dual, then for 
each j ,  

( 1 1 )  

(For a discussion of the polar dual, see, for example, Eggleston [3] . )  The inner and 
outer } -radii have been determined for many polytopes in JRd . Brandenberg [1] pro
vides an elaborate survey of what is known. 

It is interesting to see what the duality ( 1 1 ) says for our a x b x c box K in JR3 . The 
inner radius r2 (K) is given in explicit terms by ( 1 0) .  The polar dual K0 of the box K 
is the irregular octahedron with vertices (±2/a , 0, 0) , (0, ±2/b , 0) , and (0, 0, ±2/c) ; 
and according to ( 1 1 )  the radius of the smallest infinite circular cylinder that contains 
K0 is the outer 2-radius R2 (K) = 1 1 r2 (K) = 1 /  Pmax · 

For example, when K is the 5 x 7 x 8 box pictured above in FIGURE 6, the 
polar dual K0 of this box K is the irregular octahedron with vertices (±2/5 , 0, 0) , 
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(0, ±2/7 , 0) , and (0, 0 ,  ±1/4) , and the outer 2-radius R2 (K0) i s  2jv'6§. FIGURE 7 
shows this octahedron and the smallest cylinder that contains it. 

T 

I.L 
(a) The polar  dua l  (b)  Sma l lest cy l i nder (c) Axia l  v iew 

Figure 7 The octahedron i n  the sma l l est cyl i nder 
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In any finite cyclic group, there are exactly d elements x satisfying xd 
= 1 for each 

divisor d of its order. Consequently, in any finite abelian group, the number of solutions 
of xd 

= 1 is a multiple of d, since we can write the group as a direct sum of cyclic 
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groups. Remarkably, this result turns out to be true for any finite group. This is a 
fundamental theorem proved by Frobenius [9] more than hundred years ago, in 1 895 : 

If d is a divisor of the order of a finite group G, then the number of solutions of 
xd 

= 1 in G is a multiple of d. 

This result (which we call the Frobenius theorem) has stimulated widespread inter
est in counting solutions of equations in groups; details can be found in Finkelstein [8]. 
Many proofs and generalizations of the result are known [1; 2, p. 49; 3, p. 92; 11; 12, 
p. 1 36 ;  18, p. 77]. A standard proof (Frobenius's original one) is a consequence of 
the character theory of finite groups (see, for instance, Serre [20, Corollary 2, p. 83]), 
but now many elementary proofs are known. In spite of its fundamental nature, Frobe
nius's theorem, unlike the Sylow theorems, has not found its well-deserved place in 
undergraduate texts in algebra. In fact, even most of the recent graduate texts in group 
theory do not include the Frobenius theorem. 

We present our own proof of the Frobenius theorem and some of its applications in 
a way that uses only elementary knowledge of group theory. For this purpose, we refer 
the reader to Herstein's book [13]. In the last section, we also discuss some applications 
of Frobenius's theorem to number theory. 

Comparison with Sylow theory To show how useful the theorem may be, let us 
recall some standard results normally proved using the Sylow theorems in most under
graduate texts in algebra. 

It is well known that every group of prime order is cyclic. Are there other natural 
numbers n such that, if G is a group of order n, then G is cyclic? Here is a typical 
approach using Sylow theory: Let n = pq , where p < q are primes. The number 
of Sylow q-subgroups is I + kq , for some k such that 1 + kq divides p. As q > p,  
k = 0 and so  there i s  a unique subgroup of order q and which, therefore, i s  normal. 
If p f q - 1 ,  the subgroup of order p is also normal and G, being their direct sum, 
is cyclic. The Frobenius theorem gives a stronger result, allowing us to characterize 
all such values of n .  These tum out to be precisely those n for which n and ifJ (n) are 
relatively prime (where ifJ (n) is the number of positive integers less than n that are 
relatively prime to n ) .  

A group G is called simple if its only normal subgroups are G and { 1 } . For instance, 
abelian simple groups are just the cyclic groups of prime order. A group is said to be 
solvable if it contains a sequence of normal subgroups { 1 }  = N0 <J N1 <J · · · <J G such 
that each quotient NHif  Nj is abelian. In particular, a solvable nonabelian group is not 
simple. 

As noted above, in a group G of order pq, where p < q are primes, the Sylow 
q-subgroup is normal and thus G is not simple. With a little more effort the Sylow 
theory shows that the Sylow r-subgroup is normal in a group of order pqr , where 
p < q < r are primes.  But Sylow theorems do not work for this purpose if the order of 
the group is a product of more than three distinct primes. Using the Frobenius theorem, 
it can be easily proved that if every Sylow p-subgroup of G is cyclic (for instance, if the 
order of the group is squarefree) and q is the largest prime divisor of the order of group, 
then the Sylow q-subgroup is normal and thus G is not simple. Burnside [2, p. 503] 
remarked, " . . .  simple (nonabelian) groups of odd order do not exist." His claim was 
proved in 1 963 by Feit and Thompson [7] when they showed that every group of odd 
order is solvable. Indeed, if G is a nonabelian group of odd order, then the commutator 
subgroup G' is a proper normal subgroup showing that G is not simple. 

Using the Frobenius theorem, one can easily prove that a group, all of whose Sylow 
subgroups are cyclic, is solvable. 
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The Frobenius Theorem Throughout, G denotes a finite group and o(g) the order 
of g E G .  By l S I , we mean the number of elements in a finite set S.  By H ::: G (resp. 
H :::] G) we mean that H is a subgroup (normal subgroup) of G. If d divides I G I ,  then 

Ad = {x E G : xd = 1 } . 

If S � G, then {S) will denote the subgroup of G generated by S. We denote the 
greatest common divisor and least common multiple of m and n by gcd(m , n) and 
lcm(m , n) ,  respectively. For an element a E G, N(a) = {g E G : ag = ga} is the 
centralizer of a and C(a) = {gag-1 : g E G} is the conjugacy class of a .  We begin 
with the following lemma, which we shall use repeatedly in the paper. 

LEMMA. For any n, the number of elements of order n in G is either 0 or a nonzero 
multiple of c/> (n) .  Furthermore, if a divisor of I G I  has the form d = pas, where pa+l 

divides I G I  and gcd(p, s)  = 1, then the set A = Adp \Ad is either empty or has cardi
nality a multiple of ¢ (pa+l ). 

Proof We define a relation on the elements of G as follows:  x is related to y if 
and only if they generate the same subgroup, that is, (x ) = (y ) . Clearly this is an 
equivalence relation. As o(x) = o(x1) if and only if gcd(t, o(x))  = 1 ,  the equivalence 
class of x has ¢ (o(x))  elements. Writing G as a disjoint union of its equiv
alence classes, it follows that the set of elements of a given order n is a union of 
equivalence classes and, thus, its cardinality is a multiple of ¢ (n) .  

To prove the second statement, we note that the set A can also be  written as  {x  : 
o(x) = pa+1 s1 , s 1 I s } .  If A -:/=  0, then it is a union of equivalence classes and the 
equivalence class of any element x with o(x) = pa+ 1 s1 has cardinality a multiple of 
¢ (pa+1 ) ,  since ¢ (pa+1s J ) = ¢ (pa+1 )¢ (sJ ) .  It follows that I A I  has cardinality a mul
tiple of ¢ (pa+I ) .  • 

We recall one well-known fact before proving the Frobenius theorem. This is: 

Ifx E G has o(x)  = mn, where gcd(m , n) = 1 ,  then x = yz for some y,  z in G  
with o(y) = m ,  o(z) = n, and yz = zy. 

(Hint for proof: Find integers a and b with am + bn = 1 .  Set y = xbn , etc.) 

THEOREM. (FROBENIUS ) If d divides I G I  then d divides l Ad I · 

Proof We proceed by double induction on I G I  and d. Note that the induction is 
started trivially with I G I  = d = 1 .  Assume I G I  > 1 and d < I G I  (since the case 
d = I G I is evident) and, that the result holds for larger divisors of I G I and groups 
with order < I G I .  

Let p be any prime divisor of I G I j d and let d = pas, where gcd(p, s )  = 1 .  Let 
A = Adp \Ad . Note that I Adp l  = l Ad I + l A  I and as d divides I Adp l  (by the induction 
hypothesis), it is enough to show that d divides I A I . If A = 0, then we are through, 
so we assume that A -:/= 0. By the lemma, l A  I is a multiple of ¢ (pa+I ) = pa (p - 1 ) .  
Thus w e  only have to show that s divides I A I . 

Since A = {x : o (x)  = pa+1s1 , s 1 I s } ,  the fact noted above shows that every ele
ment x of A has the form yz = zy, where o(y) = pa+I and zs = 1 .  

For a E G of order pa+I , let us define Sa = {ab : b E N(a) and bs = 1 } .  Define 
Sccal = U{Sx : x E C (a) } .  Then A is a union of the sets Sa . We now show that the 
union is disjoint. Let o(a) = o(aJ )  = pa+I and ab = a1 b1 with bs = b1 = 1 ,  where 
ab = ba and a1 b1 = ha1 • Note that (ab)' = (a1 bJ )s implies that as = af . Since 
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aPa+I = a(+1 
and gcd(pa+I , s )  = 1 ,  we have a = a1 showing that A i s  a disjoint 

union of the sets Sa . So it is enough to show that s divides I Sc(a) 1 . 
Note that ab -+ xax-1xbx-1 is a bijection from Sa -+ Sxax-1 . Thus I Sc(a) l = 

I C (a) I I Sa l · Let o (N (a) f (a ) ) = k and m = gcd(s , k) . Then ab -+ b (a) is a bijection 
from 

Sa -+ {y  E N (a)f (a) : ys = 1 } = {y E N (a) f (a ) : ym = 1 } . 
As IN (a)f (a) l < I G I ,  the induction hypothesis implies that 

I { Y E N (a) f (a ) : ym = 1 } 1  = I Sa l = em for some natural number c.  

Also I Sc<al l = I C (a) I I Sa l = I G I I Sa i / IN(a) l = IG icmf kpa+ I . Since both k and s di
vide I G I ,  so does lcm(k , s) = ks fm,  showing that s divides I G icm/ k. Finally, as pa+I 

divides I G icm/ k and gcd(p , s) = 1 ,  we see that s divides I Sc(a) l · • 

Some applications in group theory In this section, we give some group-theoretic 
applications of the Frobenius theorem, including those stated in the introduction. We 
shall tacitly use the following fact: If d divides I G I  and l Ad I = d, then any subgroup 
H of order d coincides with Ad and is thus normal in G. 

APPLICATION 1 .  Let I G I = p� 1 p�2 . . .  p�' ,  where PI < P2 < · · · < p, are primes. 
If every Sylow p-subgroup of G is cyclic, then a Sylow p, -subgroup is normal in G 
(and is thus unique). Moreover, G is solvable. In particular, if I G I  is squarefree and p 
is the largest prime divisor of I G 1. then the Sylow p-subgroup is normal in G and G 
is solvable. 

Proof. We show that l Ad I = d for every divisor d of I G I  that can be written in a 
particular form, namely d = pek P:!i1 • • •  p�' ,  1 ::::: k ::::: r and fJk ::::: ak . We proceed by 
induction on d.  For d = IG I ,  the result follows trivially. Assume d < I G I  and that the 
result holds for larger divisors of the given type. Let p be the largest prime divisor of 
I G I /d and A =  Adp \Ad . As a Sylow p-subgroup is cyclic, A =I= 0. By our assumption, 
I Adp l  = dp and by the Frobenius theorem, I Ad l = dt for some 1 ::::: t < p. By the 
lemma, p - 1 divides dp - dt = d(p - t) . As every prime divisor of d is greater 
than or equal to p, gcd(p - 1 ,  d) = 1 and so p - 1 1  p - t ,  implying that t = 1 .  Thus 
l Ad I = d and, in particular, l AP�' I = p�' implying that a Sylow p, -subgroup N is 
normal. Now by induction on the size of the group, N and GIN are solvable and thus 
G is solvable. 

As every group of prime order is cyclic, the "in particular" part is now clear. • 

APPLICATION 2 .  Let n be a positive integer. Then every group of order n is cyclic 
if and only if gcd(n , </J (n))  = 1 .  

Proof. One can easily check that gcd(n , </J (n)) = 1 if  and only if  n i s  squarefree 
and p f q - 1 ,  where p and q are prime divisors of n .  

Necessity We exhibit a noncyclic group for each n where gcd(n , </J (n))  =I= 1 .  If p2 I n ,  
for some prime p ,  then Z p  X Zp X znjp2 i s  a noncyclic group of order n (recall that 
Zm x Zn is cyclic if and only if gcd(m , n) = 1 ) . Now suppose n is squarefree and 
p < q are two prime divisors of n such that p I q - 1 .  As Zq \ {0} is group under 
multiplication modulo q and p I q - 1 ,  there exists a subgroup, say H, of order p .  
Define an operation on  elements of Zq x H by (x , h ) (y ,  k)  = (x + hy , hk) . Then 
Zq x H is a group with identity (0, 1) in which (x , h )- 1 = ( -h- 1x ,  h-1 ) .  Note that if 
h =1= 1 ,  then ( 1 ,  h ) (  1 , 1 )  =I= ( 1 ,  1 ) (  1 , h) showing that G = Zq x H is nonabelian. Thus 
G x Znfpq is a nonabelian group of order n .  
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Sufficiency We show that I Ad I = d for every divisor d of I G 1 .  We proceed by in
duction on d. For d = I G I ,  the result follows trivially. Assume d < I G I  and that the 
result holds for all divisors greater than d. Let p be any prime divisor of I G I I d and 
A = Adp \Ad . Clearly A i= t/>. By our assumption, I Adp l  = dp and by the theorem, 
l Ad I = dt for some 1 � t < p. Arguing just as in Application 1 ,  we see that that t = 1 
and so I Ad I = d. In particular, I AP I = p for every prime divisor of I G I , which implies 
that every Sylow p-subgronp is normal. Thus G,  being direct sum of its cyclic Sylow 
p-subgroups of co-prime order, is cyclic. • 

Dickson [ 6] characterized n E N such that every group of order n is abelian. Miller 
and Moreno [17] studied nonabelian groups in which every subgroup is abelian. They 
proved that the order of a nonabelian group whose every proper subgroup is abelian 
can have at most two distinct prime factors. 

As already mentioned, if l Ad I = d, then every subgroup of order d coincides with 
Ad and is thus normal. But the converse is not true; a normal subgroup of order 
d may not coincide with Ad . For example, if G = Z2 x Z2 and N = ( ( 1 ,  0) ) ,  
then N � G and I N I  = 2, but I A2 I = 4 .  But if N � G and gcd( I N I ,  I GIN I )  = 1 ,  
then N = A IN I · To see this let a E AINI · Now aN E G I N  implies a iG/N I E N  and 
a E A 1N 1 implies a iN I 

= 1 E N. This, in light of gcd( I N I ,  I GI N I )  = 1 ,  implies that 
a E N. 

A similar argument shows that if K � N � G with gcd( I K I ,  I N I I I K I ) = 1 ,  then 
K � G. For if k E K and g E G, then x = gkg- 1 E N. Thus x iN/K I E K and x iK I 

= 

1 E K ::::} x E K .  But this is not true for any chain of normal subgroups. For ex
ample, if we take G = A4, N = V4 = {1 ,  ( 12) (34) , ( 1 3) (24) , (23) ( 14) } ,  and K = 

{1 ,  ( 1 2) (34) } ,  then K � N � G but K is not normal in G .  What went wrong here 
is the fact that gcd( l  K I ,  I N  I K I )  i= 1 .  

In 1 895, Frobenius conjectured (in the same paper where he proved the theorem 
that bears his name [9]) that if I Ad l = d, then Ad forms a subgroup. The work of 
many group theorists went into proving the conjecture. Its final proof was announced 
in 199 1  [14] and the details appeared later [15]. 

Let I G I  = pam , where p is the smallest prime divisor of I G I  and gcd(p, m) = 1 .  If 
the Sylow p-subgroup is cyclic, then, as argued in Application 1 ,  I An; pfi I = n I pfl , for 
all l � f3 � a. Thus, it follows from Frobenius's conjecture that G has subgroups of 
order nl  pfl,  for all 1 � f3 � a. 
Some applications in number theory Many authors have studied Ad in symmetric 
groups [ 4, 5, 16, 19]. It is well known that two elements in Sn are conjugate if and only 
if they have the same cyclic decomposition [13, p. 88] . So if the cyclic decomposition 
of a E Sn into m cycles has n; cycles of length l; with l; ::: 1 and L; l; n; = n, then 
one can show that the size of the conjugacy class of a in Sn is 

I n; I I m m 

n . 1J l; 1J n; .  ( 1 )  

and that the number of r -cycles in  Sn i s  n !lr (n - r) ! .  The Frobenius theorem gives us 
many useful number-theoretic identities just by finding suitable l Ad I for appropriate 
values of d in symmetric groups. 

APPLICATION 3. For any prime p and any natural number n ::: p, we have 
t n !  " = - 1 (mod p) , {=t pk (n - kp) ! k ! -

where t is the largest natural number such that tp � n. 
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Proof. As Ap in Sn contains only those elements that are products of p-cycles and 
1 -cycles (fixed points), then by equation ( 1 )  

I ! 
l A  � n . 

p i = 1 + � k ( - k ) '  k ' ' k=l P n P · · 

where the summand counts those permutations that are the product of k p-cycles and 
n - kp fixed points, and the initial 1 counts the identity permutation. Thus, the result 
follows from the Frobenius theorem. • 

Note that by putting n = p in Application 3, we get Wilson's theorem (that is, 
(p - 1 ) ! = - 1  (mod p) for any prime p ). 

APPLICATION 4 .  lf n /2 < P1 < P2 < · · · < Pk � n, where n E N  and each Pi is 
prime, then 

k ' L n . 
= - 1  (mod p1 P2 · · · Pk) .  t= l Pr (n - Pr) ! 

Proof. Find 1 Ap1 p2 • . .  pk I in Sn as in Application 3 above. 

Proceeding along the same lines one may obtain many such identities. 

• 
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Proof With o ut Words :  
(0 , 1 )  and [0 , 1 ]  H ave t h e  Same Card i n a l i ty 

f(x) /(114) = 1 

t ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·. ·;r.;·.··. �� a3 · · · · · · · · · · · ·� . . . ; . . .  : . . . . . .  ; . . .  �· : : : : : 
az . . . . . . . . . . . .  : . . . . . .  : . . .  : . . . . . .  : . .  ; . . . . . .  . 
at . . . . . . . . . . . .  · :· . . . . . .  : . . .  � . . . . .  - �  . .  ; . . . . . .  . 

(0,0) 

lim an = l n-->oo 
lim bn = 0 n-->oo 

lim Cn = lim dn = 1 /4 n....,.oo n----+-oo 
lim en = lim fn = 3/4 

n---+-oo n ...... oo 

e1 ez· · · ·h ft 
/(3/4) = 0 

1 X 

-KEVIN HUGHES AND TODD K. PELLETIER 
ROWAN UNIVERSITY 

GLASSBORO, NJ 08028 
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A " Base" Cou nt of the Rati o n a l s  
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In 1 874, Cantor showed that the set of rational numbers Q is countable-that is, 
equipotent to the set of natural numbers N-by arranging its elements in a grid and 
sweeping out paths of ever-increasing length, numbering elements as they are tra
versed [1] .  Here, we present a new way to do this, which relies instead on constructing 
a couple of simple functions. 

Counting Q Consider a base- 12  number system with I as the symbol for the digit 
10 and - as the symbol for 1 1 . Define the map q; : Q -+  N02l (the natural numbers 
written in base- 1 2) by q;(alb) = alb, where, on the left-hand side, alb is the lowest
terms representation of a typical element of Q and, on the right-hand side, alb means 
the base- 1 2  number consisting of the digits of a (possibly preceded by a minus sign -),  
followed by the division slash I and then the digits of b.  

For example, q; ( -51 1 2) = -51 12. Let a:  N02l -+ N be the obvious injection con
verting a number from base- 12  to base- 10. Continuing our example, this means 

a (-51 1 2) = 1 1  · 124 + 5 · 123 + 10 · 122 + 1 · 1 2
1 + 2 · 12° = 238, 1 90 .  

Then a o q;: Q -+  N is an injection, whereby IQ I  :::::: I N I .  Inclusion provides the reverse 
inequality, and we conclude IQ I  = IN J . 

Counting A The set A, called the algebraic numbers, is the set of all numbers, 
possibly complex, that are roots of some monic polynomial with rational coeffi
cients [2] . For example, � and 3i are algebraic numbers-roots of x2 - 2 and 
x2 + 9, respectively-whereas rr and e are not. It turns out that we can count A using 
the same technique we used to count Q. Namely, find an injection from A into N and 
then use inclusion to get equipotentiality. 

Proceeding in this way, observe that given a E A, there exists a unique monic poly
nomial Pa of smallest degree n given by 

where aj E Q, such that a is a root of Pa and Pa has no repeated roots. Therefore Pa 
has n roots r 1 , • • •  , r n , all distinct. 

Write rj in polar coordinates as pje;ej , where 0 ::=: pj < oo and 0 ::=: ej < 2rr, and 
define the total ordering -< on the set of roots of Pa as follows: rj -< rk if and only if 
pj < Pk or pj = Pk and ()j < ()k · Use -< to re-label the roots such that r1 -< · · · -< rn . 
Then a is uniquely described by the coefficients an- I , . . .  , a0 and the position j (as a 
root of Pa) of a,  where 1 :::::: j :::::: n, when ordered by -< as a root of Pa . 

Add the comma , to our existing 1 2-symbol alphabet and consider the map 
1/J:  A -+ No3l defined by 1/J (a) = an_ 1 , • • •  , a0 , j (a sort of concatenation of the 
sequence of coefficients followed by the position j of a). Let r :  N<13l -+ N be the 
obvious injection converting a number from base- 1 3  to base- 10. Then r o 1/J :  A -+  N 
is an injection, so IA I ::=: iN I . Inclusion gives the reverse inequality, and we see that 
A is countable. 
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Conclusion This method of enumerating sets certainly does not displace Cantor's 
classic technique, but it does show another, more concrete way to accomplish the task. 
Though we applied it only to Q and A, the method presented here can, in theory, be 
used to count any set X such that N 5:; X (so that we may apply inclusion) for which a 
sufficiently clever function from X into N(n) for some n can be found. 

Acknowledgment. This work was supported by the Paul K. and Evalyn E. Cook Richter Memorial Trust, while 
the author was simultaneously pursuing a B.S.  and M.S. in mathematics at Yale University. 
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Let us consider the following problem, which is a variant of problem 9 from the 2002 
American Invitational Mathematics Examination (AIME): 

PRO B LE M . Harold, Tanya, and Ulysses paint a very long fence. Harold starts with 
the first picket and paints every hth picket; Tanya starts with the second picket and 
paints every tth picket; and Ulysses starts with the third picket and paints every uth 
picket. If every picket gets painted exactly once, find all possible triples (h , t ,  u) .  

Solution: Label the pickets 1 ,  2 ,  3, and so  on. Ulysses cannot paint picket 4 or else 
Ulysses paints all the pickets thereafter. Suppose Harold paints picket 4. Then Ulysses 
cannot paint picket 5, or else Harold and Ulysses both paint picket 7, so Tanya paints 
picket 5. Ulysses paints picket 6 and (h , t ,  u) = (3 , 3 ,  3 ) .  On the other hand, suppose 
Tanya paints picket 4. Then Ulysses cannot paint picket 5 ,  or else there is nothing 
left for Harold to paint, so Harold paints picket 5. Hence Ulysses paints picket 7 and 
(h , t, u) = (4, 2, 4) . 

This problem really asks about how one can partition the set of integers into three 
arithmetic progressions. The second triple (4, 2 , 4) is a bit more interesting than the 
first, since not all the differences are equal. In elementary number theory, arithmetic 
progressions are equivalently called residue classes of various moduli. In such a set
ting, the arithmetic progression a +  km, k E Z is denoted by a (mod m) .  

One can generalize the AIME problem and ask whether there exists a finite set 
of congruences, with all moduli distinct and greater than or equal to 2, that forms 
a partition of the set of integers. This turns out to be impossible [4] . Relaxing the 
assumption about partitioning the integers, one can look for finite sets of congruences 
such that every integer belongs to at least one of them. 

Our purpose in this note is to survey this topic and provide an elementary proof of 
the relationship between two well-known conjectures .  
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Erdos's covering systems In 1 849, A. de Polignac conjectured that any odd integer 
n ::=::: 3 can be expressed in the form 2k + p, where k is a nonnegative integer and p 
is either a prime or the integer 1 [6]. In 19SO, Erdos refuted this by proving that there 
exists an arithmetic progression, no term of which has the given form. 

To prove his assertion, Erdos developed the concept of covering systems of con
gruences. A family of residue classes a; (mod n; ) with 2 :::: n 1 :::: · · • :::: n, is called a 
covering system of congruences if every integer belongs to at least one of the residue 
classes, that is, every integer satisfies at least one of the congruences x = a; (mod n; ) .  

This i s  how Erdos's proof worked: Consider the system of congruences (which 
can be shown to be a covering system) : 0 (mod 2) , 0 (mod 3) ,  1 (mod 4) , 3 (mod S) , 
7 (mod 1 2) ,  and 23 (mod 24) [2, 3]. Each of these congruences implies a correspond
ing congruence for certain powers of 2. For example, the congruence k = 1 (mod 4) 
together with 24 = 1 (mod S) imply that 2k = 2 (mod S) .  To see this, let k = 4n + 1 
and observe that 

By similar reasoning, if k is a nonnegative integer, then at least one of the fol
lowing congruences holds: 2k = 1 (mod 3) ,  2k = 1 (mod 7) ,  2k = 2 (mod S) ,  2k = 

8 (mod 17) ,  2k = 27 (mod 1 3) ,  or 2k = 223 (mod 241 ) .  
Now consider the congruences 1 (mod 3 ) ,  1 (mod 7 ) ,  2 (mod S) ,  8 (mod 17) ,  

27 (mod 13) ,  and 223 (mod 241 ) .  Since the moduli are pairwise relatively prime, 
there are infinitely many integers that satisfy all the congruences, by virtue of the 
Chinese Remainder Theorem. Now, if an odd integer a satisfies all the congruences, 
then all the integers of the form a - 2k are divisible by one of the moduli 3, 7, S, 17 ,  
1 3  or 24 1 .  I t  follows that a - 2k is  not prime and therefore a does not have the form 
2k + p. 

Another example of application of covering systems of congruences came from 
R. L. Graham [5]. His result is in a sense opposite to a well-known conjecture stat
ing that the Fibonacci sequence, defined by fo = 0, /1 = 1 ,  and for n ::=::: 0 fn+2 = 
fn+I + fn , contains infinitely many primes. Graham used covering systems to show 
that one can choose the initial relatively prime values fo and f1 so that the correspond
ing sequence contains only composite integers. The smallest known choice is 

fo = 33 1636S3S9982747374722006S6430763 

and 

/1 = 1 S 1 002891 108840197 1 1 89S9030S49878S . 

The major open problem in this topic is a conjecture of Erdos, that for every c ::=::: 2 
there is a covering system of congruences with n 1  ::=::: c and distinct moduli. This is 
known to be true for some values of c; the current record, held by Choi [1], is c = 20. 
If there is a covering system of congruences with distinct moduli, and n 1 ::=::: c for every 
c ::=::: 2, then one would obtain the following result about arithmetic progressions: For 
every positive integer m there exists an arithmetic progression, no term of which is a 
sum of a power of two and an integer, having at most m prime factors [4]. 

Two other important conjectures are by Selfridge and Schinzel: 

SELFRIDGE CONJECTURE . There is no covering system of congruences with dis
tinct odd moduli. 

SCHINZEL CONJECTURE . In every covering system a; (mod n; )  with 1 :::: i :::: r ,  
there exists i 'I= j such that n; I n j .  
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Schinzel has proved that Selfridge's conjecture implies the Schinzel conjecture us
ing the irreduciblity of certain polynomials [7] . We propose to prove this result using 
only elementary methods. 

Main result We begin with a definition. Let as (mod ns) with 1 � s � r be a cover
ing system of congruences. Then it is a reduced covering system of congruences if no 
proper subset of the covering system of congruences is a covering system of congru
ences.  

THEOREM. The Selfridge conjecture implies the Schinzel conjecture. 

Proof Let us assume that the Selfridge conjecture holds, but the Schinzel conjec
ture does not. Then there is a reduced system of covering congruences, as (modms ) ,  
such that m i f mi for all i =1= j . Let m; = 2fJ; Oi , where Oi i s  odd for 1 � i � r . Let 
us also assume that the congruences have been numbered in such a way that if i < j 
then f3i � f3i · It follows from the Selfridge conjecture that f3r > 0. Obviously, all the 
numbers 0; are different. 

Now, if 0; � 3 for all i ,  then we would contradict the Selfridge conjecture since 
if x = a; (mod 2fJ; 0; ) ,  and 2fJ; 1 (2f3; 0; ) ,  then x = a; (mod 0; ) ,  and we would have 
a covering system with all odd moduli. Consequently, if ai (mod mi )  is a covering 
system of congruences and ni lmi for each i ,  then ai (mod n; ) is also a covering system 
of congruences. Thus, there exists i0 , such that 0;0 = 1 and consequently m;0 = 2io . It 
follows that i0 = r or else we would have mio I mio+l · 

Next, we shift the system of congruences by -a7 0 that is, change the variable x 
to x + a7 , so that we may assume that the rth congruence has the form 0 (mod 2f3' ) .  
Consider now integers of the form x2Pr - 1 ,  with x E Z .  None of these integers is 
covered by the congruence 0 (mod 2f3' ) ,  however all of them are covered by the rest 
of the congruences, since the system is a covering system. Our system now takes the 
form: 

x2f3r - 1 = as (mod ms) 1 � s � r - 1 .  

Note that it may happen that not all of the congruences have solutions ;  however, when
ever a congruence has solutions, we must have 

gcd(2fJ, ,  ms) I as + 1 .  

Since gcd(2Pr ,  ms) = 2Ps ,  it follows that 2Ps I as + 1 .  Let 

U = {s : 1 � s � r - 1 such that 2Ps I as + 1 } .  

For every s E U ,  the congruence (*) takes the form x2Pr-f3s = (as + 1 )j2Ps (mod Os) 
or x = Cs (mod Os) for some integers Cs · This new system of congruences is a cov
ering system of congruences with all distinct odd moduli, contradicting the Selfridge 
conjecture. • 
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Proof Without  Words :  
S u ms of Tr i a ngu l ar  N u m bers 

n (n + l ) (n + 2) tn = 1 + 2 + . . .  + n ::::} tl + t2 + . . .  + tn = 
6 

= 

= - (n+ l )  \2] 

1 3 1 n (n + l ) (n + 2) t1 + t2 + · · · + tn = 6 (n + 1 )  - (n + 1 )  · 6 = 
6 

--ROGER B .  NELSEN 

LEWIS & CLARK COLLEGE 

PORTLAND OR 972 1 9  
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As motivation for our designs, first consider the identity 

t (n) = 2n . 
1=0 l 

Next, imagine inserting an-I b1 in the lth term of the sum and replacing 2n by (a + b )n . 
The result is the binomial theorem. 

Our objective here is to examine the effect of an analogous "pollination" of Vander
monde's identity 

( 1 )  

Guided by our binomial theorem example, we slip four letters (two per binomial coef
ficient) with exponents that add to n inside the sum in ( 1 )  to obtain 

t (j) (� = i
)a

n+l-i-i bi-lci-ldl . 
1=0 l l l 

(2) 

Although there is no simple formula for this sum to rival the (a + b )n of the binomial 
identity, an interesting metamorphosis ensues, producing a noteworthy matrix identity. 

For convenience, we abbreviate the sum in (2) by V;,i e:!) .  The leading role in our 
story is played by the matrix [ a b J ( (a , b

) )  d = V;,j ' C n C, d O:::;i , j:::;n 
(3) 

which we shall refer to as the nth Vandermonde matrix with parameters a, b, c, and d. 
For n  = 3, 

a2b 
2abc + a2d 
bc2 + 2acd 

c2d 

ab2 
b2c + 2abd 
2bcd + ad2 

cd2 
(4) 

At least two cases of the Vandermonde matrix have already achieved some noto
riety. When c = 0 and a = b = d = 1 ,  (3) is upper triangular and contains the first 
n + 1 rows of Pascal's triangle. For instance, 

1 1 ) 
2 3 
1 3 

. 

0 1 
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When transposed, this case of (3) i s  aptly referred to as the nth Pascal matrix. The 
case of (3) with e = 0 and a = d = 1 has also received some attention. It coincides 
with the transpose of a generalization of Pascal's matrix considered first by Call and 
Velleman [2] and later by Aggarwala and Lamoureux [1] . 

Getting back to our story, our pollination of the sum in (2) leads to the following 
result. 

THEOREM 1 . If a , b, . . .  , g are elements of afield, then 

(5) 

In other words, the product of two Vandermonde matrices is Vandermonde. Moreover, 
the matrix of parameters for the product miraculously coincides with the product of 
the underlying two-by-two matrices of parameters ! 

Before proving (5), we present a sampling of its remarkable implications in the 
next two sections. In the final section, we briefly describe the context that led us to 
Theorem 1 .  
A sampler of inverses and determinants The most amusing consequences of The
orem 1 involve inverses and determinants of Vandermonde matrices. For ad - be =I= 0, 
(5) implies that 

[
a b

]
- l

= [ ad � be ad
-
�be ] = 1 

[ 
d -

a
b ] n

· (6) e d n -e a (ad - be)n -e 
ad - be ad - be n 

As an example of (6), the inverse of the transpose of Pascal 's matrix is readily seen 
to be 

( (:) ):�i,j �n 
= [ � 1 

1 
So, for n = 3, 

u 1 1 
1 2 
0 1 
0 0 

r
l 
= [ � - 1 

1 J = (c- 1 )j-i e)) n l O�i, j�n 

� r  = c - I  

0 1 
0 0 
0 0 

1 
-2 
1 
0 

-

; ) -3 
. 

1 
Although the origin of this equality is unclear to us, it is well known and appears in a 
number of contexts (including inclusion-exclusion [5, p. 67]) .  

Next, we note that the determinant of the Vandermonde matrix is just a power of 
the determinant of its underlying two-by-two matrix of parameters. 

COROLLARY 1 .  

det [ � � 1 = (ad - bet(n+ll/2 . 

Proof The result follows directly if a, b, e, or d is zero; for instance, if e = 0, 
then (3) (the example in (4) is illustrative) is upper triangular with i th diagonal entry 
an-i di for 0 :::=: i ::S n .  Thus, 

det [ � � 1 = andOan- ldl · . .  a0dn = (ad - b · O)n(n+0/2 . 
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S o  assume that a, b , c , and d are all nonzero. As 

and as the determinant of a product is the product of determinants, we have [ J ( d b ) n(n+ l )/2 
det � � 

n 
= 

a � c dn(n+l )/2 = (ad - bct<n+ l)/2 . 

Corollary 1 bears a resemblance to the classical Vandermonde determinant 

det(x;-j )O�i .j9 = n (X; - Xj ) ·  
O�i<j�n 

(7) 

• 

Motivated by the similarities, we tried introducing even more variables, indexing our 
parameters a and b by row. The result in (8) below, which we refer to as the Vander
monde expansion, may be regarded as a distant cousin of the binomial theorem. 

For a = (ao , a1 , . . .  , an) and b = (bo , bt ,  . . .  , bn) , let 

a b _ V.· . a; , ; [ � � J ( ( b )) 
C d n - I , J C , d O�i. j�n

. 

Then, a slight variation on our proof of Corollary 1 leads to 

det 
[ � � 1 = (aod - boct (a1d - btct- 1 · · · (and - bnc)0 • (8) 

The key is to observe that the matrix on the extreme right in (7) is independent of a 
and b. So (7) remains true when, in both of the other matrices, the a and b in row i are 
respectively replaced by a; and b; for 0 :::: i :::: n . 

Although the Vandermonde expansion will never become as popular as the bino
mial theorem, it contains some striking special cases. When n = 3, c = - 1 ,  d = 1 ,  
a =  (a , 1 ,  1 ,  1 ) ,  and b = (b, 0 ,  0 ,  0) , (8) reduces to 

a3 a2b ab2 b3 
-3 1 0 0 

3 -2 1 0 
- 1  1 - 1  1 

In the above, note that the usual suspects in the expansion of (a + b )3 appear across the 
first row and that a truncated, signed Pascal triangle is contained in the lower left cor
ner. Of course, such determinant formulas for (a + b)k , 0 :::: k :::: n (n + 1 )/2, may be 
obtained by simply running monomials through appropriate rows of the signed Pascal 
triangle. For instance, if n = 3, c = - 1 ,  d = 1 ,  a =  (a , a , 1 ,  1 ) ,  and b = (b, b, 0, 0) , 
then (8) implies 

Among the outright curious, the balanced selections a = (a , 1 /2 ,  1 /2,  1 /2) and b = 
(b, 1 /2 ,  1 /2,  1 /2) with n = 3, c = - 1 ,  and d = 1 in (8) give 
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a3 a2b ab2 b3 

(a + b)3 = 
-3/4 -1 /4 1/4 3/4 3/2 - 1 /2 - 1 /2 3/2 
- 1 1 - 1 1 

A sampler of scalar identities Theorem 1 is a cache of binomial identities ranging 
from the well-known to the exotic. Careful selection of the parameters will in fact 
reveal Vandermonde's identity, the binomial theorem, and other results of interest. 
First, by the definition of matrix multiplication, (5) is equivalent to 

� (a , b) (e , f) (ae + bg , af + bh) to V;,k c ,  d Vk,J g, h 
= V;,J ce + dg , cf + dh ' (9) 

where j is any integer from 0 to n .  
To extract ( 1 ) from (9), note that 

if k = 0, 
if O < k ::S n . 

Similarly, 

vk,J (�: �) = t; G) (� = {) 1n+1-k-J 1 J-1ok-1 1 1 = G)
. 

Thus, we obtain ( 1 ) : (n) � (1 ,  0) (1 ,  1) (1 ,  1) � (j) (n - j) i 
= to V;,k 1 , 0 Vk,J 1 , 0 = V;,J 1 , 1 = {=a l i - I 

. 

Of course, further setting j = 1 gives the well-known binomial recurrence 

So 

To see the binomial theorem emerge from (9), observe that (a ,  b) n-k k (1 ,  1) (n) Vo,k a , b 
= a b and Vk,o 1 , 1 = k . 

( 10) 

n (a + b , a + b) � (a , b) (1 , 1) � (n) n-k k (a + b) = Vo.o a +  b, a +  b 
= t:t Vo,k a ,  b Vk,o 1 ,  1 = t:t k a b . 

In the realm of the exotic, we note that the special case 

� (1 ,  - 1) (1 ,  1) (- 1 ,  0) to V;,k 1 ,  1 Vk,J 2, 1 = V;,J 3 , 2 
of (9) translates into 

t t t(-l)k-m ( k ) (� � k) (j) (n = j)2k-l = (- 1t-i (� = �)2J3i-j .  k=O m=O 1=0 m l m [ k [ l J 
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Closed formulas for such sums are easily produced. The trick i s  to select a , b ,  . . .  , h 
so that at least one of the parameters on the right in (9) is zero. 

Next, as Vandermonde's identity ( 1 ) holds when j is viewed as an indeterminate, 
it is only natural to ask whether (9) has a similar extension. Annoyingly, the answer 
in general is no. Recall that for j an indeterminate and 1 a nonnegative integer, the 
extended binomial coefficient is defined by G) = { ; U - I)  · · ;! U - l  + I ) 

if I >  0, 
if I =  0. ( 1 1 ) 

Of course, ( 1 1 ) agrees with the usual binomial coefficient when j i s  replaced by  an 
integer greater than or equal to 1 .  Also, ( 1 1 ) is a polynomial in j of degree 1 .  The 
difficulty in extending (9) is exposed by noting that, if j is a real number other than 0, 1 ,  . . .  , or n, then 

f-. (0, 1) (0, 0) (n) (j) n-j (n) (0, 1) � V;,k 0, 1 Vk,j 0, 1 = i n :rf: O i = V;,j 0, 1 . 
However, (9) may be extended with some restrictions. 

One approach, among many, is to restrict a , b , . . .  , h to the field of real numbers 
and require that 

eh = gf and that e , f, ae + bg and af + bh are all positive. ( 1 2) 
The proof that (9) holds under these conditions parallels the standard technique for 
extending ( 1 ) : First, for 0 =:: k =:: n, note that 

j f-j Vi · (
e , f

)
= �  (j) (n - j) n+l -k f-1 k-lh l e k,J h � 1 k - I e g g , 1=0 

is a polynomial in j of degree at most k. Now, for 0 =:: i =:: n , define 

( . ) = ejf-j V.· · (
ae + bg , af + bh

) -
ej f-j f-- v.. (

a , b
)
Vi ·

(
e , f

) . p J 1 , )  + d f + dh � l ,k d k,j h ce g , c k=O c , g , 
With ( 1 2) in  mind and a little work, it may be verified that p(j) i s  a polynomial in j of 
degree at most n . As (9) implies that p(j) has at least n + 1 roots (namely, 0, 1 ,  . . .  , n ) , 
p(j) must in fact be the zero polynomial. Thus, under the terms of ( 12), (9) holds for 
j an indeterminate. 

As a final example, we note that setting a =  c = e = f = 1 ,  b = d = g = h = 0, 
and j = - 1 in our extension of (9) gives the commonplace equality 

(�) = �)-1)1 (� � 1) · 
l 1=0 l 1 

An algebraic proof There are a number of proofs of Theorem 1 .  For one, it is pos
sible to extend the usual combinatorial proof of ( l ) . lt is not too difficult to see that the 
sum in (2) may be interpreted as a weighted selection of a committee of size i from a 
group of people consisting of j women and n - j men. Induction will also do the job:  
With judicious use of ( 10), i t  may be verified that both sides of (9) (which, we recall, 
is equivalent to (5) in Theorem 1 ) satisfy the recurrence relationship 

Pi,j (n) = (af + bh)p;,j- l (n - 1) + (cf + dh)Pi- l ,j - l (n - 1 ) .  
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However, w e  find neither the combinatorial approach nor the induction argument en
tirely satisfying. In our opinion, the slickest proof, the only one we present, relies on 
linear algebra. 

We set the stage. Let V be an m-dimensional vector space with ordered basis 
fJ = (v1 , v2 , • • •  , Vm) . The matrix representation relative to fJ of a linear operator 
T :  V --+  V is [T]p = (a; , jh�i.j�m · where a;,j is the i th coordinate of T (vj ) , that is, 
the a;,j are scalars satisfying 

m 
T(vj ) = L: a;,j V; for 1 ::: j ::: m .  

i=l 
The algebraic key to (5) is the fact that the matrix associated with the composition 
of linear operators is the product of the matrices of the operators. In other words, if 
S, T : V --+ V are linear operators, then (see Friedberg, Insel, and Spence [3, Ch. 2]) 

[S o T]p = [S]p [T]p . ( 1 3) 

Identity ( 1 3) is a handy tool for establishing properties of matrix multiplication that 
avoids much of the tedium of indices ! It's  perfect for our purposes. 

Proof of Theorem 1.  Let F denote a field, a, b, . . .  , h be elements of F, and 
F [ x , y] be the ring of polynomials over F in the commuting indeterminates x and y. 
For each polynomial p(x , y) E F[x , y] , define 

M(p) = p(ax + cy , bx + dy) and N(p) = p(ex + gy , fx + hy) . 
By thinking in terms of matrix products, we may express the formulas for M and N in 
the more satisfying forms 

M(p) = p (<x . y) (� �)) and N(p) = p (<x . y) (; {)) . ( 14) 

Note that M, N :  F[x , y] --+ F[x , y] . Also, both M and N are ring homomorphisms. 
From ( 14), the composition of M with N applied to a polynomial p(x , y) E F[x , y] 
is seen to be 

We now turn our attention to the subset 

of F[x ,  y] . The nonzero elements in Hn are just the homogeneous polynomials of 
degree n in the indeterminates x and y.  Note that Hn is a vector space over F and that 
y = (xn , xn- I y , . . .  , yn) constitutes an ordered basis of Hn . Moreover, the restrictions 
of M and N to Hn are linear operators on Hn . 

To determine the matrix of M relative to the ordered basis y ,  we fish the coefficient 
of xn-i yi out of 

M(xn-j yi ) = (ax + cyt-i (bx + dy)j . 
For 0 ::: l ::: i ,  the binomial theorem tells us that the coefficient of 

n+l-i-j i-1 X y in (ax + cyt-j is (� - j)an+l-i-j ci-1 
l - I  

( 1 5) 
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and that the coefficient of 

xi-1y1 in (bx + dy)i is G)bi-1d1 . 
Noting that xn-i yi = xn+1-i-i yi-1 xi-1 yl for 0 � 1 � i ,  it is then evident that the coef
ficient of xn-i yi in ( 15)  is none other than 

t (j) (� = j)an+1-i-i bi-1ci-1d1 = Vi,j (a , b) · 1=0 1 l 1 c, d 
So the matrix relative to y of M restricted to Hn is 

As similar considerations lead to 

[N]y = [ ; { 1 and [M o N]y = [ ( � �) (; {) 1 , 
( 1 3) delivers the final blow: 

For the adventurous, we note that our algebraic proof is readily adapted to de
duce identities for extended Vandermonde matrices with k2 parameters for any integer 
k � 2. 

Concluding remarks We were led to consider the pollinated sum (2) and to the 
discovery of Theorem 1 by certain practical considerations. There are many natural 
contexts in which the elements of a fixed set vary with time between two states. For 
one, the members of a given population may or may not have a certain contagious 
disease. From one moment to the next, a healthy individual may become ill and an in
fected individual may recover. For another, the components of a system of service may 
either be in or out of service. Again, with each passing moment, an in-service compo
nent may fail while a broken component may be repaired and returned to service. It 
turns out that, under certain probabilistic assumptions, such processes can be modeled 
as Markov chains . Moreover, the corresponding transition matrices are Vandermonde. 

In this context, Theorem 1 is an indispensable tool. It allows us to manipulate (mul
tiply, invert, and diagonalize) Vandermonde matrices at will . As we've demonstrated, 
such computations miraculously boil down to working with the underlying two-by-two 
matrices of associated parameters. 
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Proposa l s  
To be considered for publication, solutions should be received by November 1, 
2005. 
1721. Proposed by Donald Knuth, Stanford University, Stanford, CA. 

The Fibonacci graphs 
1 1 1 

1 Q O Q 1 

G 4 

are defined by successively replacing the edge with maximum label n by two edges n 

and n + 1 ,  in series if n is even, and in parallel if n is odd. Prove that the Fibonacci 
graph with n edges has exactly Fn+I spanning trees, where F1 = F2 = 1 and Fn+I = 

Fn + Fn-I · Show also that these spanning trees can be listed in such a way that some 
edge k is replaced by k ± 1 as we pass from one tree to the next. For example, for 
n = 5 the eight spanning trees can be listed as 125, 1 24, 1 34, 1 35 ,  145,  245, 235, 234. 

1722. Proposed by Emeric Deutsch, Polytechnic University, Broooklyn, NY. 
Let k and n be positive integers with k :::: n . Find the number of permutations of 

{ 1 ,  2, . . .  , n } in which 1 ,  2, . . .  , k appears as a subsequence but 1 ,  2, . . .  , k, k + 1 does 
not. 

1723. Proposed by Herb Bailey, Rose Bulman Institute of Technology, Terre Haute, 
IN. 

Let I be the in center of triangle ABC with BC tangent to the in circle at D. Let E be 
the intersection of the extension of ID with the circle through B, I, and C. Prove that 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 
Mathematics, Iowa State University, Ames lA 500l l ,  or mailed electronically (ideally as a J51EX file) to 
ehjohnst@iastate.edu. All communications should include the readers name, full address, and an e-mail address 
and/or FAX number. 

2 3 9  



240 

- T 
DE = -- , 

s - a 

MATH EMATICS MAGAZI N E  

were T and s are, respectively, the area and semiperimeter of triangle ABC, and 
a = BC. 

1724. Proposed by Mihaly Bencze, Sacele-Negyfalu, Romania. 

Let x1 , x2 , • • •  , Xn be positive real numbers. Prove that 

1725. Proposed by Michel Bataille, Rouen, France. 

Let & be the ellipse with equation x2 I a2 + y2 I b2 = 1 ,  where a and b are positive 
integers. Find the number of parallelograms with vertices at integer lattice points and 
sides tangent to & at their midpoints. 

Qu ickies 
Answers to the Quickies are on page 243. 
Q951. Proposed by Ovidiu Furdui, student, Western Michigan University, Kalama
zoo, MI. 

Show that 

Q952. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus), 
Bronx Community College ofthe City University of New York, New York, NY. 

Let n be a positive integer and let x1 , x2 , • • •  , Xn be positive real numbers with 
XtX2 • • • Xn � 1 .  Prove that for any positive integer k, 

n n 
"'X� > "'X�-1 L- J - L- J ' j=l j=l 

with equality if and only if x1 = x2 = · · · = Xn = 1 .  

Sol utions  
A Diophantine Equation 

1696. Proposed by Albert F. S. Wong, Singapore. 

For which positive integers k does the equation 

x2k-t + ik = z2k+1 

have a solution in positive integers x, y, and z? 

June 2004 
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Solution by Jerry W. Grossman, Oakland University, Rochester, MI. 

There are solutions for all k.  Because 2k - 1 ,  2k, and 2k + 1 are pairwise rela
tively prime, it follows from the Chinese Remainder Theorem that there is a positive 
integer m with 

m = O 

m = O 

m = - 1 

(mod 2k) 

(mod 2k + 1 )  

(mod 2k - 1 ) .  

There are then positive integers r, s ,  t with m = r(2k) = s (2k + 1 )  = t (2k - 1 ) - 1 .  
Now let a = 32k+1 - 22k , so a + 22k = 32k+1 . Multiply through by am to obtain am+1 + 
am 22k = am 32k+ 1 • This can be put into the form 

giving a solution to the diophantine equation. 

Note. Daniele Donini notes that in the article "On Solutions of the Equation xa + 
yb = zc", in the MAGAZINE 41 :4 ( 1968), 174-5, Allan I. Liff shows that the equation 
xa + yb = zc is solvable in positive integers if at least one of the exponents is relatively 
prime to the other two. 

Also solved by JPV Abad, Reza Akhlaghi, Roy Barbara (Lebanon), Michel Bataille (France), Eddie Cheng, 
John Christopher; Con Amore Problem Group (Denmark), Jim Delany, Boian Djonov, Daniele Donini (Italy), 
Anne-Maria Emvall-Hytonen (Finland), G.R.A.20 Problems Group (Italy), Chris Hill, David P. Lang, Peter W. 
Lindstrom, David E. Manes, Jose H. Nieto (Venezuela), Walter Nissen, Northwestern University Math Problem 
Solving Group, Thomas Peter; /wan Proton, Achilleas Sinefakopoulos, Ian VanderBurgh, Paul Weisenhom (Ger
many), Steven J. Wilson, Li Zhou, and the proposer. 

Connected Permutations June 2004 

1697. Proposed by David Callan, University of Wisconsin, Madison, WI. 
A permutation :rr on [n] = { 1 ,  2, . . .  , n }  is connected if for each k, 1 .:::: k .:::: n - 1 ,  

there i s  a j ,  1 .:::: j .:::: k with :rr (j) > k .  Let an denote the number of connected permu
tations on [n] .  Show that for n ::::: 2, 

n-1 
an = L k(n - k - 1) ! ak .  

k=1 

Solution by Jim Delany, California Polytechnic State University, San Luis Obispo, CA. 

For positive integer k, let [k] = { 1 ,  2, . . .  , k} .  Let :rr be a permutation on [n] .  We 
say :rr is k-disjoint if :rr ( [k]) = [k] , but :rr ([j]) =I= [j] for j < k.  Let Dk be the set of 
k-disjoint permutations on [n] .  The sets Dk partition the set of permutations on [n] ,  
and a permutation :rr i s  connected i f  and only if :rr e Dn . If  :rr e Dt. then restricting :rr 
to [k] results in a connected permutation on [k] . It follows that IDk l = (n - k) ! at . and 
hence that n !  = 2:�=1 (n - k) ! ak . Applying this to the sum in question, 

n-1 n- 1 L k(n - k - 1 ) ! ak = L (n - (n - k)) (n - k - 1 ) ! ak 
k=1 k=1 

n- 1 n- 1 
= L: n (n - k - 1 ) ! ak - L:<n - k) ! ak 

k=l k=1 
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= n I: ( (n - 1 ) - k) ! ak - (i )n - k) ! ak - an) 
k= I k= I 

= n (n - 1 ) ! - (n ! - an) = an . 

Note. Chip Curtis notes that connected permutations are called indecomposable by 
R. P. Stanley in Enumerative Combinatorics, Volume /, Cambridge University Press, 
1999, p. 49. The first few terms of the sequence {an } are 1 ,  1 ,  3, 1 3 ,  7 1 , 46 1 ,  . . . .  At 
the website http://www.research.att.cornrnjas/sequences, this is sequence A0033 19. 
This site also provides the following explicit formula, 

1 !  2 !  3 ! n !  
1 1 !  2 !  (n - 1 ) !  

an = (- 1t- I det 0 1 1 !  (n - 2) ! 

0 0 0 1 !  

Also solved by JPV Abad, Michel Bataille (France), Con Amore Problem Group (Denmark), Chip Curtis, 
Jim Delany, Daniele Donini (Italy), Elias Lampakis (Greece), Jose H. Nieto (Venezuela), Rob Pratt, Nicholas C. 
Singer, Christopher N. Swanson, Li Zhou, and the proposer. 

A Rational Expression June 2004 
1698. Proposed by Achilleas Sinefakopoulos, student, Cornell University, Ithaca, NY. 

Let n be an odd positive integer and let r be a positive rational number. Prove that 
there are positive integers a1 , a2 , a3 , b1 , b2 , b3 such that 

Solution by Chris Hill, St. Bonaventure University, St. Bonaventure, NY. 

Let r = pI q , where p and q are positive integers. Then 

(p<n+l )/2q (n+3)/2r + (pqn-I r+l + (pqnt+2 
(pqn )n + (pqn+Ir+I + (p<n- I J/2q <n+Il/2r+2 

p p<n2+n)/2- Iq (n2+3n)/2 + pnqn2- I + pn+ I qn2+2n p 

q pnqnLJ + pn+Iqn2+2n + p(n2+n)/2- Iq (n2+3n)/2 q 
Thus pI q has the desired representation and we may choose b1 = a3 • 

Also solved by John Christopher, Con Amore Problem Group (Denmark), Daniele Donini (Italy), Li Zhou, 
and the proposer. 

A Tetrahedron Inequality June 2004 
1699. Proposed by Zhang Yun, First Middle School of Jinchung City, Gan Su, China. 

Let A 1 A2A3A4 be a nondegenerate tetrahedron, let hk > 1 :::: k :::: 4, be the length of 
the altitude from Ak> and let r be the radius of the inscribed sphere. Prove that 
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Solution by Michel Bataille, Rouen, France. 

Let Sk be the area of the face opposite At. 1 :::: k :::: 4, and S = S1 + S2 + S3 + S4 • 
The volume V of A 1 A2A3A4 is given by V = thkSt . 1 :::: k :::: 4, and by V = trs .  
Thus, rfhk = Sk fS, 1 :::: k :::: 4 .  We then have 

4 hk 4 1 4 1 4 1 6  B hk + 3 r  
= B 1 + 3 (rj hk) 

= B 1 + 3 (Sk/S) � ;l I::=t ( 1  + 3 (Sk/S)) 
= 7 '  

where the inequality follows from the arithmetic-harmonic mean inequality. Further
more, equality holds if and only if S1 = S2 = S3 = S4, that is, if and only if A t A2A3 A4 
is an isosceles tetrahedron. 

Also solved by Minh Can, Chip Curtis, Daniele Donini (Italy), Michael Goldenberg and Mark Kaplan, 
G.R.A.20 Problems Group (Italy), D. Kipp Johnson, L R. King, Murray S. Klamkin (Canada), Kee-Wai Lau 
(China), Jose H. Nieto (Venezuela), Nonhwestem University Math Problem Solving Group, Raul A. Simon 
(Chile), Ian VanderBurgh (Canada), Li Zhou, and the proposer. 

A Condition for AB = BA June 2004 

1700. Proposed by Yongge Tian, Queen 's University, Kingston, Ontario, Canada. 

Let A and B be n x n matrices satisfying A 2 = A and B2 = B .  Show that AB = BA 
if and only if range(AB) = range(BA) and range(AT B T ) = range(BT AT), where CT 

denotes the transpose of C .  

Solution by Li  Zhou, Polk Community College, Winter Haven, FL. 

Suppose that range(AB) = range(BA) and range(AT BT) = range(BT AT) .  Then 
by [1],  there are invertible n x n matrices P and Q such that 

AB = BAP and AT BT = B T AT Q .  

Multiplying ( 1 ) on the left by B we get BAB = B2AP = BAP = AB. Transpos
ing (2) into BA = QT AB and multiplying on the right by B we get BAB = QT AB2 = 

QT AB = BA. Hence AB = BA. The converse is immediate. 

REFERENCE 
1 .  C. D .  Meyer, Matrix Analysis and Linear Algebra, SIAM, 2000, p.  1 7 1 .  

Also solved by Michael Andreoli, Michel Bataille (France), Gary F. Birkenmeier, Chico Problem Students, 
Adam Coffman, Luz M. DeAlba, Jim Delany, Daniele Donini (Italy), Eugene A. Herman, Mandy Hill and Lucian 
Stanisor and Aminiel Awichi and Amy Ward, David P. Lang, Junaid N. Mansuri, Jose H. Nieto (Venezuela), Pa
tricia Parker and Brandi Shuptrine and Tiffany Jackson and Chuck Miller, Daniel R. Patten, Angela Sanders and 
Kelly Nichole Troillet, Gerald Thompson, Thai·Doung Tran, Gotz Trenkler (Germany), University of Arkansas 
Little Rock Solvers, Xiaoshen Wang, Yan-loi Wong (Singapore), and the proposer. 

Answers 
Solutions to the Quickies from page 240. 
A951. Let I denote the value of the integral. Then - 100 sin2 x (100 sin2 y ) - 100 sin2 y (100 sin2 x ) 

I - 2 2 2 dy dx - 2 2 2 dx dy 0 X 0 X + y  0 y 0 X + y  100 100 sin2 x sin2 y 
= dx dy .  

o o y2 (x2 + y2) 
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Thus 100 100 ( sin2 x sin2 y sin2 x sin2 y ) 
21 = + dx dy 0 0 x2 (x2 + y2) y2 (x2 + y2) - 100 100 sin2 x sin2 y _ (100 sin2 x ) (100 sin2 y ) _ rr2 

- 2 2 dx dy - 2 dx 2 dy - 4 
. 

o o x y  o x o Y 

The result follows. 

A952. If k 2: 2 we have 

n n n 
""" x� - """ x�- 1 = ""ex� - x�- 1 ) � )  � )  � ) J j=1 j=1 j= 1 

n 
= L (Cxi - l ) (xJ-1 - 1 ) + (xi - 1 )) 

j=1 
n 

= L [<xi - 1) (Cxi - l ) (xJ-2 + xJ-3 + . . .  + 1 )) + (xi - 1 )] 
j=1 

The first sum in the last line of the display is clearly nonnegative. The second expres
sion in this line is also nonnegative because ( ) 1 /n t xi 2: n TI xi 2: n .  

j=1 j=1 

(Note that this also establishes the inequality in the case k = 1 .) In addition, the last 
line of the display is 0 if and only if x1 = x2 = · · · = Xn = 1 .  

" Descartes" of You r  Dreams 

Mathematicians in the market for a car today have many choices. While analytic 
geometers might be drawn to the Ford Focus and algebraists may assume the 
Isuzu Axiom is for them, graph theorists would probably still choose a Nissan 
Pathfinder. For linear drivers, there's the Toyota Matrix, but if its dimensions 
are too large, the Honda Element is an option. Though the OldsmobUe Delta 88 
attracted analysts in the past, Infiniti currently offers them boundless choices. 

Alas, my heart is set on a concept car, the Uncoln Lemma, but I'm waiting 
for them to work out the details . --DAWN W. LINDQUIST 

UNIVERSITY OF ST. FRANCIS 
JOLIET, IL 60435  
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Seely, Ron, Consumed by a problem: UW-Madison grad student makes math history, Wisconsin 
State Journal ( 1 8  March 2005) A 1 ,  AlO. Mackenzie, Dana, "Cranky" proof reveals hidden 
regularities, Science 308 ( 1  April 2005) 36-37. McKee, Maggie, Classic maths puzzle cracked 
at last, NewScient i st . com news service (21 March 2005),  http : I /www . news c ient i st . com/ 

art i c l e . ns?id=dn7180 . 

The numbers of partitions of every positive integer of the form 5n + 4 are all divisible by 5; for 
integers of the form 7n + 5,  by 7; for 1 1n + 6, by 1 1 .  Ramanujan noticed these congruences 
in 1920, with their mysterious multiplicative structure in an additive problem. The first two 
were proved by Freeman Dyson in the 1 940s, and a general method (a "crank to turn") for all 
three was found by George Andrews and Frank Garvan. In the late 1 990s, Ken Ono (Univer
sity of Wisconsin) used modular forms to prove that there are such congruences for all larger 
primes, too. Now Karl Mahlburg, a graduate student of Ono's, has found that "the crank" itself 
indeed works for all primes. Mahlburg makes press reports and earlier work available at his site 
http : I /www . math . wise . edu; -mahlburg/ ,  but not the paper in question. (Thanks to Don 
Schneider, Beloit, WI.) 

The Abel Prize 2005 . Press Releases and Biographies. http : / /www . abelprisen . no /en/ 

prisvinnere/ 2005/document s/abelprize_2005_EN . pdf . Helge Holden, Peter D. Lax: Ele
ments from his contributions to mathematics, http : I /www . abelpr i sen . no/ en/prisvinnere/ 

2005/document s/popular2005eng9 . pdf . 

Peter D. Lax (Courant Institute, New York University) has been awarded the Abel Prize for 
2005 ($986K), for his work in theory and applications of differential equations and computation 
of their solutions; applications include shock waves and solitons. The explanation of Lax's 
work by Holden starts out bravely in a popular vein; the second section is entitled, "What is a 
differential equation?" But it is a tall leap from there to Lax's work: Half a page later we have 
the heat equation, with its second partial derivatives; and differential operators show up in the 
last section. The Abel Prize is awarded by the Norwegian Academy of Science and Letters and 
presented by the King of Norway. The first prize, in 2003, went to Jean-Pierre Serre; the 2004 
prize was shared by Michael Atiyah and Isadore Singer. Press reports term the prize "a kind 
of surrogate for a Nobel prize in mathematics," but it is just as real, just as valuable, and good 
publicity for mathematics. 

Clauset, Aaron, and Maxwell Young, Scale invariance in global terrorism, http : I I arxi v . org/ 

abs/phys ics/05020 14 (2 February 2005).  

Mathematics is the science of patterns, some of which may surprise us. The authors graph, on a 
log-log scale, frequency vs. severity of terrorist attacks over the past 37 years. For both injuries 
and of deaths, they find a power law x -a ,  with a :::::: 1 .9. 1t resembles that observed by Lewis F. 
Richardson about wars (with a same-size ex). The authors consequently suggest that large-scale 
events such as the attack on New York City are not "special cases" but fit the pattern, which 
with a < 2 would predict more frequent and more severe attacks. 

245 
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Odifreddi, Pergiorgio, The Mathematical Century: The 30 Greatest Problems of the Last 1 00 
Years, Princeton University Press, 2005 ; xvi + 204 pp, $27.95 . ISBN 0-69 1--09294-X. Laird, 
Cameron, Review, Unix Review (February 2005),  http : I /www . unixreview . com/ do cument s/ 

s=9568/ur0502f /ur0502f . htm . 

This is an astonishingly readable, succinct, and wonderful account of twentieth-century mathe
matics ! It is a great book for mathematics majors, students in liberal-arts courses in mathemat
ics, and the general publie. I am amazed at how easily the author has set out the achievements 
in a broad array of mathematical fields. The writing appears effortless. Perhaps a dozen equa
tions appear in all. Laird's review of the book criticizes the chapter on mathematics and the 
computer-no "wavelets, symbolic algebra, database theory, aleatory methods, or information
based complexity theory, and only a hint of proteomics and cellular automata." Well, it's about 
mathematics, not computing. (Some concepts mentioned are explained only later or not at all. 
I hope that the next printing-plus a mass-market paperback at a popular price-fixes a few 
translation and spelling errors; it wouldn't hurt to re-edit the index, too.) 

Preston, Richard, Capturing the unicorn: How two mathematicians came to the aid of the Met, 
New Yorker ( 1 1 April 2005) 28-33; http : I /www . newyorker . com/fact/ content / art icles/ 

0504 1 1 f a_fact . 

Gregory and David Chudnovsky are famous for research in number theory (algorithms for cal
culating pi) and for building supercomputers (from mail-order parts). Their latest venture turned 
their supercomputer to fitting together very detailed photographs of parts of the famous "Hunt 
of the Unicorn" tapestries in the Cloisters museum in Manhattan. They had to match individual 
threads from one photo to the next, despite shrinking, expanding, and stretching of the fibers 
over the days of photographing a 15 m2 tapestry. "Each pixel had to be calculated in its rela
tionship to every other nearby pixel." Three months of computations concluded with a final 24 
hours of assembly of the final image. And that was for just one of the seven tapestries. 

Conquest, Wendy, Bob Drake, and Dan Rockmore, The Math Life, film on NTSC VHS video
tape and DVD, Films for the Humanities and Sciences, Princeton, NJ, www . f i lms . com, 2002; 
5 1  min, $149.95 (U.S.  and Canada distribution only). ISBN 0-7365-5978-7. 

This film grapples with what mathematicians do, by interviewing more than a dozen, including 
Ron Graham, Persi Diaconis, and others famous and not so famous. They say many things 
that you coulcl anticipate ("we're in the business of abstraction;" "there's this secret world that 
you can't see unless you know mathematics") and offer an occasional surprising explanation 
("[as for] eccentricity levels, mathematics is right at the top because in mathematics you are 
free to create your own worlds") . Such a film is a rare endeavor, and I enjoyed it. But what does 
it convey to the nonmathematician audience? As a mathematician, I can't get the beam out of my 
own eye; but the superficial impressions that come to mind are that about half of mathematicians 
are foreign-born and that the accompanying technomusic is distracting. As a potential purchaser 
of such a film (e.g., to show in liberal arts courses on mathematics), I can consider the $ 1 50 
price either low (compared to an outside speaker) or far too high (compared to PBS films, at 
$ 10-20/hour). This film was produced with NSF support; as part of the dissemination plan for 
the grant, NSF should have demanded a price that a high school teacher could afford. 

Mackenzie, Dana, What in the name of Euclid is going on here?, Science 307 (4 March 2005) 
1 402-1403. 

Computer software "proof assistants," which check every step of a proof, have been used by 
Jeremy Avigad (Carnegie Mellon University) to verify the prime number theorem, by Georges 
Gonthier (Microsoft Research) to verify the proof of the four color theorem, and by Thomas 
Hales (University of Michigan) to verify the Jordan curve theorem. Hales hopes further to verify 
his proof of the Kepler conjecture (about optimal sphere-packing). 
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Prob lems 

45th International Mathematical Olympiad 

Athens, Greece 

July 12 and 13, 2004 

edited by Zuming Feng 

1 . Let ABC be an acute triangle with AB =I= AC, and let 0 be the midpoint of seg
ment BC. The circle with diameter BC intersects the sides AB and AC at M and N ,  
respectively. The bisectors of LBAC and LMON meet at R. Prove that the circum
circles of triangles BMR and CNR have a common point lying on segment BC. 

2. Find all polynomials P (x) with real coefficients that satisfy the equality 

P (a - b) + P (b - c) + P (c - a) = 2P (a + b + c) 

for all triples (a , b ,  c) of real numbers such that ab + be +  ca = 0. 

3 .  Define a hook to be a figure made up of six unit squares as shown in the diagram 

or any of the figures obtained by applying rotations and reflections to this figure. 
Determine all m x n rectangles that can be tiled with hooks so that 

• the rectangle must be covered "Nithout gaps and without overlaps; and 

• no part of a hook may cover area outside the rectangle. 

4. Let n be an integer greater than or equal to 3, and let t1 , t2 , • • •  , tn be positive real 
numbers such that 

2 ( 1  1 1 ) 
n + 1 > (tl + tz + · · · + tn ) - + - + · · · + - . 

t1 tz tn 

Show that tj , tb and tk are side lengths of a triangle for all i ,  j ,  and k with 1 ::::; i < 

j < k ::::; n .  
5 .  In a convex quadrilateral ABCD, diagonal BD bisects neither LABC nor L CDA. 

Point P lies inside quadrilateral ABCD in such a way that 

LPBC = LDBA and LPDC = LBDA.  

Prove that quadrilateral ABCD i s  cyclic i f  and only i f  AP = CP. 
6. A positive integer is called alternating if among any two consecutive digits in its 

decimal representation, one is even and the other is odd. Find all positive integers 
n such that n has a multiple that is alternating. 

2 4 7  
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Solutions 

Note: For interested readers, the editor recommends the USA and International Math
ematical Olympiads 2004. There many of the problems are presented together with a 
collectiQn of remarkable solutions developed by the examination committees, contes
tants, and experts, during or after the contests. 

1 .  Extend segment AR through R to meet side BC at D (that is, line AD bisects LBAC).  
We will prove that the circumcircles of triangles BMR and CNR meet at D.  Since 
quadrilateral BCNM is cyclic, 

LAMN = LACB and LANM = LABC. 

Hence triangles ABC and ANM are similar. Since AB =1= AC, AN =I= AM. Because 
OMN is an isosceles triangle with OM = ON, the bisector of LMON is also the 
perpendicular bisector of MN. Because AM =I= AN, the intersection of the perpen
dicular bisector of segment MN and the bisector of LMAN meet at a point R on the 
circumcircle of triangle AMN. We conclude that R lies on the circumcircle of tri
angle AMN; that is, AMRN is cyclic. It follows that LARM = LANM. By the second 
equality in (*) , we obtain LARM = LABC. Extend segmentAR through to meet side 
BC at D. Then LARM = LABD; that is, BDRM is cyclic. Likewise, we can show 
that CDRN is cyclic. Therefore, the circumcircles of triangles BMR and CNR meet 
at D, as desired. 

2. A polynomial P (x) satisfies the condition of the problem if and only if P (x)  = 
cix2 + c2x4 , where ci and c2 are arbitrary real numbers. 

To see this, assume that P (x) is a polynomial satisfying the conditions of the 
problem. Set 

n 
P (x)  = PnXn + Pn-I X

n-I + · · · + PI X + Po = L p;Xi 

i=O 

for real numbers p0 , PI , . . .  , Pn with Pn =I= 0. For a good triple (at ,  bt , ct) , we must 
have 

n n n n L P; ti (a - b)i + L P; ti (b - c); + L P; t i (c - a)i = 2 L P; ti (a + b + c)i , 
i=O i=O i=O i=O 

or 
n L P; ti [ (a - b)i + (b - c); + (c - a)i - 2(a + b + c)i ] = 0. (*) 

i=O 

Consider the polynomial Q (x) = L-7=0 q;xi = 0, where q; = p; [(a - b)i + (b 
c)i + (c - a)i - 2(a + b + c)i ] .  By equation (*) , we conclude that Q (t) = 0 for 
all real numbers t .  Hence 

for all 0 :::: i :::: n .  In particular, if i = 0, then p; = 0. Because ab + be +  ca = 

ab + c(a + b) ,  setting a +  b = 1 and c = -ab leads to good triples.  Hence we 
consider good triples of the form (a , b, c) = [u , ( 1 - u ) ,  (u - l)u ] .  Setting u = 1 
and u = 2 in the above equation and substituting the resulting good triples into 
(*') provides valid but limited information. (Why?) Setting u = 3 gives (a , b, c) = 
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(3 , -2,  6 )  and (*') becomes Pi (5i + (-8) ; + 3; - 2 · 7; ) = 0 for all 0 :::: i :::: n .  If 
i is odd, then 5i + ( - 8) i  + 3; - 2 · 7i = 5; + 3; - 8; - 2 · 7; < 0, and so Pi = 0. 

If i is an even integer greater than 4, then (8/7) ; ::: (8/7)6 = 262 144/ 1 17649 > 2, 
and so 5; + ( -8) ; + 3; - 2 · 7i > 0 and Pi = 0. (It is easy to check that 52 + 82 + 
32 = 2 .  72 and 54 + 84 + 34 = 2 . 74 . )  Therefore, such polynomials have the form 
P (x) = c1x2 + c2x4 for some real numbers c1 and c2 . We claim that any real ci and 
c2 yield solutions of the problem. Note that if PI (x) and P2 (x) are two polynomials 
satisfying the conditions of the problem, then P (x) = ci PI (x) + c2 P2 (x) ,  where 
ci and c2 are arbitrary real numbers, is also a polynomial satisfying the conditions 
of the problem. Therefore, it suffices to show that PI (x) = x2 and P2 (x) = x4 are 
indeed the solutions of the problem. We leave this process to the reader. (The case 
P2 (x) = x4 needs a bit of work.) 

3 .  The rectangles that can be tiled with hooks are those with sides {3a , 4b} or {c ,  1 2d}  
with c (j. { 1 ,  2 ,  5 } ,  where a ,  b ,  c, d E  z+ , and the order of the dimensions is not 
important. 

We first show that these rectangles can be tiled. We can form a 3 x 4 rectangle 
from two hooks, so we can tile any 3a x 4b rectangle. In particular, we can tile 
3 x 1 2d and 4 x 1 2d rectangles, so by joining these along their long sides, we can 
tile a c x I 2d rectangle for any c ::: 6. 

Now we show that no other rectangles can be tiled with hooks. First, note that 
in any tiling of a rectangle by hooks, for any hook A its center square is covered 
by a unique hook B of the tiling, and the center square of B must be covered by A.  
Hence we  can pair up the hooks in  a tiling, and each pair of  hooks will cover one 
of the (unrotated) shapes shown in the figure. 

(a) (c) (e) (b) (d) (f) 

The upshot is that given any tiling of a rectangle with hooks, it can be uniquely 
interpreted as a tiling with unrotated shapes of types (a) through (f), which we 
shall call "chunks". In particular, the area of the rectangle must be divisible by 1 2, 
because each shape has area 12 .  Also, it is then clear that no rectangle with a side 
of length I ,  2, or 5 can be tiled by these pieces. It remains to be shown that at least 
one side of the rectangle must be divisible by 4. 

Assume on the contrary that this is not the case; imagine the rectangle divided 
into unit squares, with the rows and columns formed labeled 1 ,  . . .  , m and 1 ,  . . .  , n 

(from top to bottom and from left to right) . Color the square in row i and column j 
if exactly one of i and j is divisible by 4 (as shown here for m = n = 1 8) .  
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Each of the six possible chunks covers 1 2  unit squares. Wherever they are, a 
straightforward verification shows that the chunk covers either 3 or 5 dark squares. 
Consequently, each chunk covers an odd number of dark squares. 

Yet we can express m = 4u + 2, n = 4v + 2, so the total number of dark squares 
is u (3v + 2) + v (3u + 2) = 2(3uv + u + v) ,  an even number. Hence the total 
number of chunks is even. As in the first solution, this forces mn to be divisible by 
2 x 1 2  = 24, contradicting the fact that neither is divisible by 4.  

4. We lose no generality by assuming that t1 ::::: t2 ::::: · · · ::::: tn , so i t  suffices to show 
that tn < t1 + t2 . Expanding the right-hand side of the given inequality gives 

By the AM-GM Inequality, tdtj + tj lt; ::=: 2. There are (�) = 
n(n;l) pairs of inte

gers (i ,  j )  with 1 ::::: i < j ::::: n . It follows that 

or 

n2 + 1 > n + tn (2_ + 2_) + __!_ (t1 + tz) + 2 [ (n) - 2] 
� � � 2 

tn - + - + -(tl + tz) - 5 < 0. ( 1 1 ) 1 
t1 tz tn 

By the AM-GM Inequality, U1 + tz) ( l ltl + 1 ltz) = 2 + tdtz + tzlt1 ::=: 4, and so 
4tn (t 1 + tz) ::::: tn ( 1  It 1 + 1 I t2) .  Substituting the last inequality into inequality ( *) 
gives 

4tn 1 -- + - (t1 + tz) - 5 < 0. t1 + tz tn 

Setting (t1 + t2)1tn = x in the last equality yields 41x + x - 5 < 0, or 0 > x2 -
5x + 4 = (x - l ) (x - 4) . It follows that 1 < x < 4, that is, tn < t1 + t2 < 4tn , 
which implies the desired result. (Note: The upper bound n2 + 1 can be improved 
to (n + ,JIO - 3)2 .) 

5 . Let w' be the circumcircle of triangle BCD. Extend segments BP and DP through 
P to meet w' again at E and F, respectively. Because BFCE is cyclic, LEFC = 

LEBC = LPBC = LABD. Likewise, LFEC = LADB. Hence triangles ABD and 
CFE are similar, with ratio BDIEF. Because BDFE is cyclic, triangles BDP and 
FEP are similar, with ratio BDIFE. It follows that quadrilaterals ABPD and CFPE 
are similar. 

Therefore, AP = CP if and only if quadrilaterals ABPD and CFPE are congru
ent, or BD = EF. Hence AP = CP if and only if LBFD = LEDF. Because triangles 
ABD and CFE are similar, LDAB = LECF. Because DECF is cyclic, AP = CP if 
and only if LDAB + LBFD = LECF + LEDF = 1 80° ; that is, if and only if ABFD 
is cyclic. It follows that AP = CP if and only if ABFCED is cyclic. 

6. The answers are those positive integers that are not divisible by 20. We call an 
integer n an alternator if it has a multiple which is alternating. Because any multiple 
of 20 ends with an even digit followed by 0, multiples of 20 are not alternating. 
Hence multiples of 20 are not alternators. We claim that all other positive integers 
are alternators. Let n be positive integer not a multiple of 20. Note that all divisors of 
an alternator are alternators. We may assume that n is a even number. We establish 
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the following fact: If n = 2t or 2 . st , for some positive integer e ,  then there exists 
a multiple X (n) of n such that X (n) is alternating and X (n) has n digits . Indeed, 
set 

10n+I - 10 
M = = 101010  . . .  10 .  

99 --..-
n digits 

For every integer k = 0, 1 ,  . . .  , n - 1 ,  there exists a sequence e0 , e1 ,  • • •  , ek e 
{0, 2, 4, 6, 8}  such that M + L�=O ei · 10i is divisible by 2k+2 if n is of the form 2t , 
or by 2 · 5k+t if n = 2 · 5t . This is straightforwardly proved by induction on k .  In 
particular, there exist e0 , • . •  , en- I e {0, 2, 4, 6, 8}  such that 

k 
X (n) = M + I >i · lOi 

i=O 
is divisible by n .  This X (n) is alternating and has n digits, establishing our claim. 

Because n is even and not divisible by 20, we write n in the form n'm ,  where 
n' = 2t or 2 · st and gcd(m , 10) = 1 .  Let c ::: n' be an integer such that 1 0c = 

1 (mod m) . (Such a c exists because 101P(m) = 1 (mod m) .) Let 

102mc+l - 10 ' 
M = · 10n + X  (n') = 101010  . . .  10  X (n') . 

99 --..-
2mc digits 

There exists k e {0, 1 ,  2, . . .  , m - 1 }  such that M = -2k (mod m) . Then X (n) = 

M + L�=I 2 · lOci is divisible by m.  This X (n) is also divisible by n' (as n' divides 

1()"' , which divides 1 0C)  and is alternating. Thus n is an alternator. 

2 004 O lym piad Results 

The top twelve students on the 2004 USAMO were (in alphabetical order) : 

Jae Bae Academy of Advancement Hackensack, NJ 
in Science and Technology 

Jongrnin Baek Cupertino High School Cupertino, CA 
Oleg Golberg Homeschooled Exeter, NH 
Matt Ince St. Louis Family Church Chesterfield, MO 

Learning Center 
Janos Kramar University of Toronto Schools Toronto, ON 
Tiankai Liu Phillips Exeter Academy Exeter, NH 
Alison Miller Home Educators Niskayuna, NY 

Enrichment Group 
Aaron Pixton Vestal Senior High School Vestal, NY 
Brian Rice Southwest Virginia Dublin, VA 

Governor's School 
Jacob Tsimerman University of Toronto Schools Toronto, ON 
Ameya Velingker Parkland High School Allentown, PA 
Tony Zhang Phillips Exeter Academy Exeter, NH 

Tiankai Liu, with a perfect score, was the winner of the Samuel Greitzer-Murray 
Klamkin award, given to the top scorer(s) on the USAMO. Tiankai is the winner of 
this award for the third year in a row. Tiankai Liu, Oleg Golberg, and Tony Zhang 
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placed first, second, and third, respectively, on the USAMO. They were awarded col
lege scholarships of $ 1 5000, $ 10000, and $5000, respectively, by the Akamai Foun
dation. The Clay Mathematics Institute (CMI) award, for a solution of outstanding 
elegance, and carrying a $3000 cash prize, was presented to Matt Ince for his solution 
to USAMO Problem 2. 

The USA team members were chosen according to their combined performance on 
the :nrd ammal-USAMO, and-the Team Seleetion 'Fest that tookplaceatthe-Mathemat
ical Olympiad Summer Program (MOSP), held at the University of Nebraska-Lincoln, 
June 13-July 3, 2004. Members of the USA team at the 2004 IMO (Athens, Greece) 
were Oleg Golberg, Matt Ince, Tiankai Liu, Alison Miller, Aaron Pixton, and Tony 
Zhang. Zuming Feng (Phillips Exeter Academy) and Po-Shen Loh (California Institute 
of Technology) served as team leader and deputy leader, respectively. The team was 
also accompanied by Reid Barton (Massachusetts Institute of Technology), Zvezde
lina Stankova (Mills College), and Steven Dunbar (University of Nebraska-Lincoln), 
as observers of the team leader and deputy leader, respectively. During the compe
tition, Professor Edward Witten (Institute for Advanced Study in Princeton, Fields 
medal winner) visited the team and congratulated the team's performance. 

At the 2004 IMO, gold medals were awarded to students scoring between 32 and 
42 points, silver medals to students scoring between 24 and 3 1  points, and bronze 
medals to students scoring between 16 and 23 points. There were 45 gold medalists, 
78 silver medalists, and 1 20 bronze medalists . There were 4 perfect papers (Tsimerman 
from Canada, Racz from Hungary, and Badzyan and Dubashinskiy from the Russian 
Federation) on this difficult exam. Golberg's score of 40 tied for 7th place overall. 
Miller became the first female gold medalist from our country. The team's individual 
performances were as follows: 

Golberg 
Ince 
Miller 

GOLD Medalist 
SILVER Medalist 
GOLD Medalist 

Liu 
Pix ton 
Zhang 

GOLD Medalist 
GOLD Medalist 
GOLD Medalist 

The total team scores on the first five problems were all even for the top three teams, 
namely, China, USA, and Russian Federation. Therefore, the total team scores (China 
42, USA 34, and Russia 27) on the sixth problem become the deciding factor of the 
team rankings. In terms of total score (out of a maximum of 252), the highest ranking 
of the 85 participating teams were as follows: 

China 220 
USA 212  
Russia 205 

Vietnam 196 
Bulgaria 194 
Taiwan 190 

Hungary 1 87 
Japan 1 82 
Iran 177 

Romania 176 
Ukraine 174 
Korea 166 

The 2004 USAMO was prepared by Titu Andreescu (Chair), Steven Dunbar, Zum
ing Feng, Kiran Kedlaya, Alexander Soifer, Richard Stong, Zoran Sunik, Zvezdelina 
Stankova, and David Wells. The Team Selection Test was prepared by Titu Andreescu 
and Zuming Feng. The MOSP was held at the University of Nebraska-Lincoln. Thanks 
to a generous grant from the Akamai Foundation, the 2004 MOSP expanded from the 
usual 24-30 students to 54 with an appropriate number of instructors and assistants. 
Zuming Feng (Academic Director), Titu Andreescu, Chris Jeuell, Qin Jing, Po-Shen 
Loh, Alex Saltman, and Zvezdelina Stankova served as instructors, assisted by Reid 
Barton as junior instructor, and Mark Lipson, Ricky Liu, Po-Ru Loh, Gregory Price, 
and Inna Zakharevich as graders. Steven Dunbar (MOSP Director) and Kiran Kedlaya 
served as guest instructors. 

For more information about the USAMO or the MOSP, contact Steven Dunbar at 
sdunbar<Omath . unl . edu. 
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